Difference between revisions of "Contatto"

From HSYCO
Jump to navigation Jump to search
 
(168 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
The CONTATTO system is DUEMMEGI’s proprietary bus architecture for building automation. HSYCO fully integrates with this system through the MCP control and gateway module, and its FXP-XT serial communication protocol.
 
The CONTATTO system is DUEMMEGI’s proprietary bus architecture for building automation. HSYCO fully integrates with this system through the MCP control and gateway module, and its FXP-XT serial communication protocol.
A serial connection between the MCP and the HSYCO SERVER is required for the integration, either directly through the server’s RS-232 port or via the RS-232 port of a supported serial to IP gateway, including the WEBS module.
+
 
 +
A serial connection between the MCPXT and the HSYCO SERVER is required for the integration, either directly through the server’s RS-232 port or via the RS-232 port of a supported serial to IP gateway, including the WEBS module.
 +
 
 +
The MCP4 can be connected via the integrated serial to IP gateway.
 +
 
 +
{{note|
 +
The Contatto I/O Server requires MCP-XT firmware version 3.0 or later.
 +
The MCPIDE configuration tools pass-through support for secure access to the MCP via HSYCO requires MCPIDE version 3.2.3 or later.
 +
}}
 +
 
  
 
[[Category:I/O Server]]
 
[[Category:I/O Server]]
Line 6: Line 15:
 
== Communication ==
 
== Communication ==
  
Employ a DE-9 (often called DB-9) male-female RS-232 straight cable to connect the RS-232 MCP port to the serial port on HSYCO SERVER or serial gateway.
+
Use a DE-9 (often called DB-9) male-female RS-232 straight cable to connect the RS-232 MCPXT port to the serial port on HSYCO SERVER or serial gateway. You can also connect the MCPXT using the RS-485 port. The MCP4 can also be connected via the integrated serial to IP gateway.
The communication baud rate can be set to 9600, 38400, 57600 or 115200 bps, according to the MCP serial port settings. The protocol requires 8bit data, no parity, one stop bit, no flow control.
+
 
A speed of 115200 bps is recommended to achieve good performance, particularly when the number of devices connected to the bus is large.
+
RS-232 parameters:
 +
{| class="wikitable"
 +
| '''Baud rate'''
 +
| 9600, 38400, 57600 or 115200 bps (according to the MCP serial port setting)
 +
|-
 +
| '''Data bits'''
 +
| 8
 +
|-
 +
| '''Stop bit'''
 +
| 1
 +
|-
 +
| '''Parity'''
 +
| none
 +
|-
 +
| '''Flow control'''
 +
| none
 +
|}
 +
 
 +
{{tip|A speed of 115200 bps is recommended to achieve good performance, particularly when the number of devices connected to the bus is large.}}
  
 
== HSYCO Configuration ==
 
== HSYCO Configuration ==
 +
 +
You can define and connect to more than one CONTATTO bus using several MCP gateways.
 +
 +
The CONTATTO I/O Server also supports dual, redundant connections between HSYCO and MCP.
 +
 +
If the main connection fails, HSYCO automatically re-routes the communication with MCP through the fail-over connection.
  
 
=== Options ===
 
=== Options ===
Line 59: Line 92:
 
|rowspan="3"|virtualpoints
 
|rowspan="3"|virtualpoints
 
|rowspan="3"|false
 
|rowspan="3"|false
|1...2033
+
|1 ... 2032
 
|enables polling for the first n virtual points of the MCP. Enable this option only if you need to generate I/O events based on these virtual points
 
|enables polling for the first n virtual points of the MCP. Enable this option only if you need to generate I/O events based on these virtual points
 
|-
 
|-
Line 71: Line 104:
 
|rowspan="3"|registers
 
|rowspan="3"|registers
 
|rowspan="3"|false
 
|rowspan="3"|false
|1...1024
+
|1 ... 1024
 
|enables polling for registers R0-Rn of the MCP. Enable this option only if you need to generate I/O events based on these registers
 
|enables polling for registers R0-Rn of the MCP. Enable this option only if you need to generate I/O events based on these registers
 
|-
 
|-
Line 148: Line 181:
 
== The Device Configuration Database ==
 
== The Device Configuration Database ==
  
The systemtopo.txt file contains the list of all devices and their individual input, output and virtual data points that could be directly associated to graphic object in the Web-based user interface.
+
The '''systemtopo.txt''' file contains the list of all devices and their individual input, output and virtual data points that could be directly associated to graphic object in the Web-based user interface.
This file can be filled manually or automatically by HSYCO at start-up. To enable automatic discovery and automatic generation of devices’ information in the systemtopo file, use the ''inputdiscovery'', ''outputdiscovery'' and ''virtualdiscovery'' options in the hsyco.ini configuration file. The default behavior is to only discover devices with output data points.
+
This file can be filled manually or automatically by HSYCO at start-up.
 +
 
 +
To enable automatic discovery and automatic generation of devices’ information in the systemtopo file, use the ''inputdiscovery'', ''outputdiscovery'' and ''virtualdiscovery'' options in '''Settings'''. The default behavior is to only discover devices with output data points.
  
 
This is an example of an automatically generated systemtopo.txt file:
 
This is an example of an automatically generated systemtopo.txt file:
Line 177: Line 212:
  
 
The MCP implements 2032 virtual points for binary (on/off) data and 1024 registers for positive scalar values (0-65535). All the virtual points and the registers can optionally generate I/O events. You can also write to the virtual data points and registers using the IO action in EVENTS or ioSet() method in Java.
 
The MCP implements 2032 virtual points for binary (on/off) data and 1024 registers for positive scalar values (0-65535). All the virtual points and the registers can optionally generate I/O events. You can also write to the virtual data points and registers using the IO action in EVENTS or ioSet() method in Java.
 +
 
You cannot directly control the MCP virtual data points and registers using GUI objects.
 
You cannot directly control the MCP virtual data points and registers using GUI objects.
To enable polling of the current state of the MCP’s virtual data points, enable the virtualpoints options in hsyco.ini.
+
 
To enable polling of the current state of the MCP’s registers, enable the registers options in hsyco.ini.
+
To enable polling of the current state of the MCP’s virtual data points, enable the ''virtualpoints'' options in hsyco.ini.
 +
 
 +
To enable polling of the current state of the MCP’s registers, enable the ''registers'' options in hsyco.ini.
 +
 
 
If you only have to write to virtual points or registers, enabling polling is not strictly required.  
 
If you only have to write to virtual points or registers, enabling polling is not strictly required.  
  
Line 250: Line 289:
 
|-
 
|-
 
|MOD32I/A
 
|MOD32I/A
 +
|32 digital input module for NO contacts in modular housing
 +
|-
 +
|MOD32IN
 
|32 digital input module for NO contacts in modular housing
 
|32 digital input module for NO contacts in modular housing
 
|-
 
|-
Line 309: Line 351:
 
|4÷20mA analog output module
 
|4÷20mA analog output module
 
|-
 
|-
|MODLC
+
|MODLC MODLC-P
 
|ambient light regulator module with integrated sensor
 
|ambient light regulator module with integrated sensor
 
|-
 
|-
Line 356: Line 398:
 
|MODKB
 
|MODKB
 
|keypad access control module
 
|keypad access control module
 +
|-
 +
|MODDI
 +
|500W IGBT dimmer module
 +
|-
 +
|MODCL
 +
|temperature control module
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOD8I/A ===
 
=== MOD8I/A ===
  
 
8 digital input module for NO contacts in modular housing.
 
8 digital input module for NO contacts in modular housing.
 +
 
It uses one input address in the CONTATTO bus.
 
It uses one input address in the CONTATTO bus.
  
Line 371: Line 422:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|i<address>.1
 
|0
 
|0
 
|R
 
|R
Line 381: Line 432:
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|rowspan="2"|i<address>.2
 
|0
 
|0
 
|R
 
|R
Line 391: Line 442:
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="2"|i<address>.3
 
|0
 
|0
 
|R
 
|R
Line 401: Line 452:
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|i<address>.4
 
|0
 
|0
 
|R
 
|R
Line 411: Line 462:
 
|-
 
|-
  
|rowspan="2"|i.<address>.5
+
|rowspan="2"|i<address>.5
 
|0
 
|0
 
|R
 
|R
Line 421: Line 472:
 
|-
 
|-
  
|rowspan="2"|i.<address>.6
+
|rowspan="2"|i<address>.6
 
|0
 
|0
 
|R
 
|R
Line 431: Line 482:
 
|-
 
|-
  
|rowspan="2"|i.<address>.7
+
|rowspan="2"|i<address>.7
 
|0
 
|0
 
|R
 
|R
Line 441: Line 492:
 
|-
 
|-
  
|rowspan="2"|i.<address>.8
+
|rowspan="2"|i<address>.8
 
|0
 
|0
 
|R
 
|R
Line 451: Line 502:
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOD32I/A ===
 
=== MOD32I/A ===
  
 
32 digital input module for NO contacts in modular housing.
 
32 digital input module for NO contacts in modular housing.
 +
 
It uses four addresses of the Contatto bus, one for each group of 8 inputs.
 
It uses four addresses of the Contatto bus, one for each group of 8 inputs.
  
Line 464: Line 518:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|i<address>.1
 
|0
 
|0
 
|R
 
|R
Line 474: Line 528:
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|rowspan="2"|i<address>.2
 
|0
 
|0
 
|R
 
|R
Line 484: Line 538:
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="2"|i<address>.3
 
|0
 
|0
 
|R
 
|R
Line 494: Line 548:
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|i<address>.4
 
|0
 
|0
 
|R
 
|R
Line 504: Line 558:
 
|-
 
|-
  
|rowspan="2"|i.<address>.5
+
|rowspan="2"|i<address>.5
 
|0
 
|0
 
|R
 
|R
Line 514: Line 568:
 
|-
 
|-
  
|rowspan="2"|i.<address>.6
+
|rowspan="2"|i<address>.6
 
|0
 
|0
 
|R
 
|R
Line 524: Line 578:
 
|-
 
|-
  
|rowspan="2"|i.<address>.7
+
|rowspan="2"|i<address>.7
 
|0
 
|0
 
|R
 
|R
Line 534: Line 588:
 
|-
 
|-
  
|rowspan="2"|i.<address>.8
+
|rowspan="2"|i<address>.8
 
|0
 
|0
 
|R
 
|R
Line 544: Line 598:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.1
+
|rowspan="2"|i<address+1>.1
 
|0
 
|0
 
|R
 
|R
Line 554: Line 608:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.2
+
|rowspan="2"|i<address+1>.2
 
|0
 
|0
 
|R
 
|R
Line 564: Line 618:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.3
+
|rowspan="2"|i<address+1>.3
 
|0
 
|0
 
|R
 
|R
Line 574: Line 628:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.4
+
|rowspan="2"|i<address+1>.4
 
|0
 
|0
 
|R
 
|R
Line 584: Line 638:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.5
+
|rowspan="2"|i<address+1>.5
 
|0
 
|0
 
|R
 
|R
Line 594: Line 648:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.6
+
|rowspan="2"|i<address+1>.6
 
|0
 
|0
 
|R
 
|R
Line 604: Line 658:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.7
+
|rowspan="2"|i<address+1>.7
 
|0
 
|0
 
|R
 
|R
Line 614: Line 668:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.8
+
|rowspan="2"|i<address+1>.8
 
|0
 
|0
 
|R
 
|R
Line 624: Line 678:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.1
+
|rowspan="2"|i<address+2>.1
 
|0
 
|0
 
|R
 
|R
Line 634: Line 688:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.2
+
|rowspan="2"|i<address+2>.2
 
|0
 
|0
 
|R
 
|R
Line 644: Line 698:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.3
+
|rowspan="2"|i<address+2>.3
 
|0
 
|0
 
|R
 
|R
Line 654: Line 708:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.4
+
|rowspan="2"|i<address+2>.4
 
|0
 
|0
 
|R
 
|R
Line 664: Line 718:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.5
+
|rowspan="2"|i<address+2>.5
 
|0
 
|0
 
|R
 
|R
Line 674: Line 728:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.6
+
|rowspan="2"|i<address+2>.6
 
|0
 
|0
 
|R
 
|R
Line 684: Line 738:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.7
+
|rowspan="2"|i<address+2>.7
 
|0
 
|0
 
|R
 
|R
Line 694: Line 748:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.8
+
|rowspan="2"|i<address+2>.8
 
|0
 
|0
 
|R
 
|R
Line 704: Line 758:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.1
+
|rowspan="2"|i<address+3>.1
 
|0
 
|0
 
|R
 
|R
Line 714: Line 768:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.2
+
|rowspan="2"|i<address+3>.2
 
|0
 
|0
 
|R
 
|R
Line 724: Line 778:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.3
+
|rowspan="2"|i<address+3>.3
 
|0
 
|0
 
|R
 
|R
Line 734: Line 788:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.4
+
|rowspan="2"|i<address+3>.4
 
|0
 
|0
 
|R
 
|R
Line 744: Line 798:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.5
+
|rowspan="2"|i<address+3>.5
 
|0
 
|0
 
|R
 
|R
Line 754: Line 808:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.6
+
|rowspan="2"|i<address+3>.6
 
|0
 
|0
 
|R
 
|R
Line 764: Line 818:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.7
+
|rowspan="2"|i<address+3>.7
 
|0
 
|0
 
|R
 
|R
Line 774: Line 828:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.8
+
|rowspan="2"|i<address+3>.8
 
|0
 
|0
 
|R
 
|R
Line 786: Line 840:
 
|}
 
|}
  
=== MOD8INP2/A ===
+
----
 +
 
 +
=== MOD32IN ===
 +
 
 +
32 digital input module for NO contacts in modular housing.
  
8 digital input module for NO contacts.
+
It uses one addresses of the Contatto bus and four channels, one for each group of 8 inputs.
It uses one input address of the Contatto bus.
 
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 798: Line 855:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|i<address>.N
 +
N=1-32
 
|0
 
|0
 
|R
 
|R
|input pin 1 off
+
|input pin N off
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 1 on
+
|input pin N on
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|}
|0
+
 
|R
+
----
 +
 
 +
=== MOD8INP2/A ===
 +
 
 +
8 digital input module for NO contacts.
 +
 
 +
It uses one input address of the Contatto bus.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 +
|-
 +
 
 +
|rowspan="2"|i<address>.1
 +
|0
 +
|R
 +
|input pin 1 off
 +
|-
 +
|1
 +
|R
 +
|input pin 1 on
 +
|-
 +
 
 +
|rowspan="2"|i<address>.2
 +
|0
 +
|R
 
|input pin 2 off
 
|input pin 2 off
 
|-
 
|-
Line 818: Line 903:
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="2"|i<address>.3
 
|0
 
|0
 
|R
 
|R
Line 828: Line 913:
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|i<address>.4
 
|0
 
|0
 
|R
 
|R
Line 838: Line 923:
 
|-
 
|-
  
|rowspan="2"|i.<address>.5
+
|rowspan="2"|i<address>.5
 
|0
 
|0
 
|R
 
|R
Line 848: Line 933:
 
|-
 
|-
  
|rowspan="2"|i.<address>.6
+
|rowspan="2"|i<address>.6
 
|0
 
|0
 
|R
 
|R
Line 858: Line 943:
 
|-
 
|-
  
|rowspan="2"|i.<address>.7
+
|rowspan="2"|i<address>.7
 
|0
 
|0
 
|R
 
|R
Line 868: Line 953:
 
|-
 
|-
  
|rowspan="2"|i.<address>.8
+
|rowspan="2"|i<address>.8
 
|0
 
|0
 
|R
 
|R
Line 878: Line 963:
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOD8INP2/C ===
 
=== MOD8INP2/C ===
  
 
8 digital input module for NC contacts.
 
8 digital input module for NC contacts.
 +
 
It uses one input address of the Contatto bus.
 
It uses one input address of the Contatto bus.
  
Line 891: Line 979:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|i<address>.1
 
|0
 
|0
 
|R
 
|R
Line 901: Line 989:
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|rowspan="2"|i<address>.2
 
|0
 
|0
 
|R
 
|R
Line 911: Line 999:
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="2"|i<address>.3
 
|0
 
|0
 
|R
 
|R
Line 921: Line 1,009:
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|i<address>.4
 
|0
 
|0
 
|R
 
|R
Line 931: Line 1,019:
 
|-
 
|-
  
|rowspan="2"|i.<address>.5
+
|rowspan="2"|i<address>.5
 
|0
 
|0
 
|R
 
|R
Line 941: Line 1,029:
 
|-
 
|-
  
|rowspan="2"|i.<address>.6
+
|rowspan="2"|i<address>.6
 
|0
 
|0
 
|R
 
|R
Line 951: Line 1,039:
 
|-
 
|-
  
|rowspan="2"|i.<address>.7
+
|rowspan="2"|i<address>.7
 
|0
 
|0
 
|R
 
|R
Line 961: Line 1,049:
 
|-
 
|-
  
|rowspan="2"|i.<address>.8
+
|rowspan="2"|i<address>.8
 
|0
 
|0
 
|R
 
|R
Line 971: Line 1,059:
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOAN/I ===
 
=== MOAN/I ===
  
 
0÷10V analog input module.
 
0÷10V analog input module.
 +
 
It uses one input address in the range 1 to 127 of the Contatto bus.
 
It uses one input address in the range 1 to 127 of the Contatto bus.
  
Line 985: Line 1,076:
  
 
|i<address>.1
 
|i<address>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|voltage value divided in 255 steps
 
|voltage value divided in 255 steps
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOAN/I4 ===
 
=== MOAN/I4 ===
  
 
Quad 0÷10V analog input module.
 
Quad 0÷10V analog input module.
 +
 
It uses four consecutive addresses of the Contatto bus, one for each input.
 
It uses four consecutive addresses of the Contatto bus, one for each input.
  
Line 1,004: Line 1,098:
  
 
|i<address>.1
 
|i<address>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|voltage value divided in 255 steps
 
|voltage value divided in 255 steps
Line 1,010: Line 1,104:
  
 
|i<address+1>.1
 
|i<address+1>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|voltage value divided in 255 steps
 
|voltage value divided in 255 steps
Line 1,016: Line 1,110:
  
 
|i<address+2>.1
 
|i<address+2>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|voltage value divided in 255 steps
 
|voltage value divided in 255 steps
Line 1,022: Line 1,116:
  
 
|i<address+3>.1
 
|i<address+3>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|voltage value divided in 255 steps
 
|voltage value divided in 255 steps
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MI420 ===
 
=== MI420 ===
  
 
4÷20mA analog input module.
 
4÷20mA analog input module.
 +
 
It uses one input address in the range 1 to 127 of the Contatto bus.
 
It uses one input address in the range 1 to 127 of the Contatto bus.
  
Line 1,041: Line 1,138:
  
 
|i<address>.1
 
|i<address>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|current value divided in 255 steps
 
|current value divided in 255 steps
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MI420-X4 ===
 
=== MI420-X4 ===
  
 
Quad 4÷20mA analog input module.
 
Quad 4÷20mA analog input module.
 +
 
It uses four consecutive addresses of the Contatto bus, one for each input.
 
It uses four consecutive addresses of the Contatto bus, one for each input.
  
Line 1,060: Line 1,160:
  
 
|i<address>.1
 
|i<address>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|current value divided in 255 steps
 
|current value divided in 255 steps
Line 1,066: Line 1,166:
  
 
|i<address+1>.1
 
|i<address+1>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|current value divided in 255 steps
 
|current value divided in 255 steps
Line 1,072: Line 1,172:
  
 
|i<address+2>.1
 
|i<address+2>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|current value divided in 255 steps
 
|current value divided in 255 steps
Line 1,078: Line 1,178:
  
 
|i<address+3>.1
 
|i<address+3>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|current value divided in 255 steps
 
|current value divided in 255 steps
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOD4AM12/V/I ===
 
=== MOD4AM12/V/I ===
  
 
4-channel 0÷10V or 4÷20mA (0÷21mA) analog input module.
 
4-channel 0÷10V or 4÷20mA (0÷21mA) analog input module.
 +
 
It uses one input address of the Contatto bus.
 
It uses one input address of the Contatto bus.
  
Line 1,097: Line 1,200:
  
 
|i<address>.1
 
|i<address>.1
|0...4095
+
|0 ... 4095
 
|R
 
|R
 
|measurement range divided in 4095 steps
 
|measurement range divided in 4095 steps
Line 1,103: Line 1,206:
  
 
|i<address>.2
 
|i<address>.2
|0...4095
+
|0 ... 4095
 
|R
 
|R
 
|measurement range divided in 4095 steps
 
|measurement range divided in 4095 steps
Line 1,109: Line 1,212:
  
 
|i<address>.3
 
|i<address>.3
|0...4095
+
|0 ... 4095
 
|R
 
|R
 
|measurement range divided in 4095 steps
 
|measurement range divided in 4095 steps
Line 1,115: Line 1,218:
  
 
|i<address>.4
 
|i<address>.4
|0...4095
+
|0 ... 4095
 
|R
 
|R
 
|measurement range divided in 4095 steps
 
|measurement range divided in 4095 steps
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOD2PT ===
 
=== MOD2PT ===
  
 
Input module for two PT100 temperature probes.
 
Input module for two PT100 temperature probes.
It uses one or two addresses according to how the dip-switch is set. If both channels are enabled (IN1 and IN2), setting the n “base” address through the FXPRO programmer, the input address and address+1 (consecutive) will be automatically assigned to the module.   
+
 
 +
It uses one or two addresses according to how the dip-switch is set.  
 +
 
 +
If both channels are enabled (IN1 and IN2), setting the n “base” address through the FXPRO programmer, the input address and address+1 (consecutive) will be automatically assigned to the module.   
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,134: Line 1,242:
  
 
|i<address>.1
 
|i<address>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|range –40 ÷ +87.5°C: code 0 corresponds to  –40°C and code 255 corresponds to +87.5°C
 
|range –40 ÷ +87.5°C: code 0 corresponds to  –40°C and code 255 corresponds to +87.5°C
Line 1,140: Line 1,248:
  
 
|i<address+1>.1
 
|i<address+1>.1
|0...255
+
|0 ... 255
 
|R
 
|R
 
|range –40 ÷ +87.5°C: code 0 corresponds to  –40°C and code 255 corresponds to +87.5°C
 
|range –40 ÷ +87.5°C: code 0 corresponds to  –40°C and code 255 corresponds to +87.5°C
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MODCNT ===
 
=== MODCNT ===
  
 
4-channel counter module in modular housing.
 
4-channel counter module in modular housing.
 +
 
It uses one input address of the Contatto bus.
 
It uses one input address of the Contatto bus.
  
Line 1,159: Line 1,270:
  
 
|i<address>.1
 
|i<address>.1
|0...65535
+
|0 ... 65535
 
|R
 
|R
 
|number of pulses
 
|number of pulses
Line 1,165: Line 1,276:
  
 
|i<address>.2
 
|i<address>.2
|0...65535
+
|0 ... 65535
 
|R
 
|R
 
|number of pulses
 
|number of pulses
Line 1,171: Line 1,282:
  
 
|i<address>.3
 
|i<address>.3
|0...65535
+
|0 ... 65535
 
|R
 
|R
 
|number of pulses
 
|number of pulses
Line 1,177: Line 1,288:
  
 
|i<address>.4
 
|i<address>.4
|0...65535
+
|0 ... 65535
 
|R
 
|R
 
|number of pulses
 
|number of pulses
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MODNTC ===
 
=== MODNTC ===
  
 
Input module for ambient temperature sensors and potentiometers.
 
Input module for ambient temperature sensors and potentiometers.
 +
 
It uses one input address of the Contatto bus.
 
It uses one input address of the Contatto bus.
The temperature values measured by MODNTC module are reported as Kelvin degrees multiplied by 10; in other words, 0°C will be reported as 2730, 0.1°C will be reported as 2731 and so on. Concerning the potentiometer channels, the values read from the module will be 0 with the potentiometer at its minimum position and it will be 1000 with the potentiometer at its maximum position.
+
 
 +
The temperature values measured by MODNTC module are reported as Kelvin degrees multiplied by 10; in other words, 0°C will be reported as 2730, 0.1°C will be reported as 2731 and so on.  
 +
 
 +
Concerning the potentiometer channels, the values read from the module will be 0 with the potentiometer at its minimum position and it will be 1000 with the potentiometer at its maximum position.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,197: Line 1,314:
  
 
|i<address>.1
 
|i<address>.1
|0...4095
+
|0 ... 4095
 
|R
 
|R
 
|temperature value
 
|temperature value
Line 1,203: Line 1,320:
  
 
|i<address>.2
 
|i<address>.2
|0...4095
+
|0 ... 4095
 
|R
 
|R
 
|temperature value
 
|temperature value
Line 1,209: Line 1,326:
  
 
|i<address>.3
 
|i<address>.3
|0...4095
+
|0 ... 4095
 
|R
 
|R
 
|temperature value
 
|temperature value
Line 1,215: Line 1,332:
  
 
|i<address>.4
 
|i<address>.4
|0...4095
+
|0 ... 4095
 
|R
 
|R
 
|temperature value
 
|temperature value
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOD4I/A ===
 
=== MOD4I/A ===
  
 
4-digital input module for NO contacts in modular housing.
 
4-digital input module for NO contacts in modular housing.
 +
 
It uses one input address in the range 1 to 127 of the Contatto bus.
 
It uses one input address in the range 1 to 127 of the Contatto bus.
  
Line 1,233: Line 1,353:
 
|-
 
|-
  
|rowspan="2"|i.<address>
+
|rowspan="2"|i<address>
 
|0
 
|0
 
|R
 
|R
Line 1,243: Line 1,363:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>
+
|rowspan="2"|i<address+1>
 
|0
 
|0
 
|R
 
|R
Line 1,253: Line 1,373:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>
+
|rowspan="2"|i<address+2>
 
|0
 
|0
 
|R
 
|R
Line 1,263: Line 1,383:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>
+
|rowspan="2"|i<address+3>
 
|0
 
|0
 
|R
 
|R
Line 1,273: Line 1,393:
 
|-
 
|-
 
|}
 
|}
 +
 +
----
  
 
=== MOD4I/S ===
 
=== MOD4I/S ===
  
 
4-digital input module for NO contacts in 2M modular housing.
 
4-digital input module for NO contacts in 2M modular housing.
 +
 
It uses one address of the Contatto bus.
 
It uses one address of the Contatto bus.
  
Line 1,286: Line 1,409:
 
|-
 
|-
  
|rowspan="2"|i.<address>
+
|rowspan="2"|i<address>
 
|0
 
|0
 
|R
 
|R
Line 1,296: Line 1,419:
 
|-
 
|-
  
|rowspan="2"|i.<address+1>
+
|rowspan="2"|i<address+1>
 
|0
 
|0
 
|R
 
|R
Line 1,306: Line 1,429:
 
|-
 
|-
  
|rowspan="2"|i.<address+2>
+
|rowspan="2"|i<address+2>
 
|0
 
|0
 
|R
 
|R
Line 1,316: Line 1,439:
 
|-
 
|-
  
|rowspan="2"|i.<address+3>
+
|rowspan="2"|i<address+3>
 
|0
 
|0
 
|R
 
|R
Line 1,327: Line 1,450:
 
|}
 
|}
  
=== DFCK3 ===
+
----
The DFCK3 is an input module for managing up to 15 different zones with an integrated clock.
+
 
It uses one address in the DOMINO bus.
+
=== MODLUX ===
 +
 
 +
Ambient light measurement module with sensor for ceiling mounting.  
 +
 
 +
It uses one address of the Contatto bus.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,338: Line 1,465:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|i<address>.1
|0
+
|0 ... 1023
 
|R
 
|R
|input pin 1 off
+
|ambient brightness value
|-
 
|1
 
|R
 
|input pin 1 on
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|}
|0
+
 
|R
+
----
|input pin 2 off
+
 
 +
=== MODMETEO ===
 +
 
 +
Meteorological data detection module for Contatto bus.
 +
 
 +
It uses one input address and, if enabled by the configuration panel of MCP IDE, one output address with the same value.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 
|-
 
|-
|1
+
 
 +
|i<address>.temp
 +
|<temp>
 
|R
 
|R
|input pin 2 on
+
|temperature value (in C/10)
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|i<address>.lux
|0
+
|<lux*10>
 
|R
 
|R
|input pin 3 off
+
|daylight value in tens of LUX
 
|-
 
|-
|1
+
 
 +
|i<address>.wind
 +
|1 m/s / 10
 
|R
 
|R
|input pin 3 on
+
|wind speed value
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|i<address>.rain
 
|0
 
|0
 
|R
 
|R
|input pin 4 off
+
|no rain
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 4 on
+
|rain
 
|-
 
|-
  
|rowspan="2"|i.<address>.5
+
|rowspan="2"|i<address>.night
 
|0
 
|0
 
|R
 
|R
|input pin 5 off
+
|day
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 5 on
+
|night
 
|-
 
|-
  
|rowspan="2"|i.<address>.6
+
|rowspan="2"|i<address>.temp.limit
 
|0
 
|0
 
|R
 
|R
|input pin 6 off
+
|measured temperature <  threshold
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 6 on
+
|measured temperature >  threshold
 
|-
 
|-
  
|rowspan="2"|i.<address>.7
+
|rowspan="2"|i<address>.lux.limit
 
|0
 
|0
 
|R
 
|R
|input pin 7 off
+
|measured daylight <  threshold
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 7 on
+
|measured daylight >  threshold
 
|-
 
|-
  
|rowspan="2"|i.<address>.8
+
|rowspan="2"|i<address>.wind.limit
 
|0
 
|0
 
|R
 
|R
|input pin 8 off
+
|measured wind speed <  threshold
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 8 on
+
|measured wind speed >  threshold
 
|-
 
|-
  
|rowspan="2"|i.<address>.9
+
|rowspan="2"|i<address>.light.south
 
|0
 
|0
 
|R
 
|R
|input pin 9 off
+
|light not from South
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 9 on
+
|light from South
 
|-
 
|-
  
|rowspan="2"|i.<address>.10
+
|rowspan="2"|i<address>.light.west
 
|0
 
|0
 
|R
 
|R
|input pin 10 off
+
|light not from West
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 10 on
+
|light from West
 
|-
 
|-
  
|rowspan="2"|i.<address>.11
+
|rowspan="2"|i<address>.light.east
 
|0
 
|0
 
|R
 
|R
|input pin 11 off
+
|light not from East
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 11 on
+
|light from East
 
|-
 
|-
  
|rowspan="2"|i.<address>.12
+
|rowspan="2"|i<address>.fault
 
|0
 
|0
 
|R
 
|R
|input pin 12 off
+
|sensor works correctly
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 12 on
+
|lsensor failure
 
|-
 
|-
  
|rowspan="2"|i.<address>.13
+
|rowspan="2"|o<address>.temp
|0
+
|<temp>
|R
+
|RW
|input pin 13 off
+
|temperature threshold (in C/10)
 
|-
 
|-
|1
+
|off
|R
+
|RW
|input pin 13 on
+
|temperature threshold off
 
|-
 
|-
  
|rowspan="2"|i.<address>.14
+
|rowspan="2"|o<address>.lux
|0
+
|<lux*10>
|R
+
|RW
|input pin 14 off
+
|daylight threshold
 
|-
 
|-
|1
+
|off
|R
+
|RW
|input pin 14 on
+
|daylight threshold off
 
|-
 
|-
  
|rowspan="2"|i.<address>.15
+
|rowspan="2"|o<address>.wind
|0
+
|1 m/s / 10
|R
+
|RW
|input pin 15 off
+
|wind speed threshold
 
|-
 
|-
|1
+
|off
|R
+
|RW
|input pin 15 on
+
|wind speed threshold off
 
|-
 
|-
 +
 
|}
 
|}
  
=== DF8I ===
+
----
The DF8I is an input module with 2x4 digital inputs.
+
 
It uses two consecutive addresses in the DOMINO bus.
+
=== MOD8R ===
 +
 
 +
8 power relay output module.
 +
 
 +
It uses one output address of the Contatto bus.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,500: Line 1,643:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|o<address>.1
 
|0
 
|0
|R
+
|RW
|input pin 1 off
+
|output pin 1 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 1 on
+
|output pin 1 on
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|rowspan="2"|o<address>.2
 
|0
 
|0
|R
+
|RW
|input pin 2 off
+
|output pin 2 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 2 on
+
|output pin 2 on
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="2"|o<address>.3
 
|0
 
|0
|R
+
|RW
|input pin 3 off
+
|output pin 3 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 3 on
+
|output pin 3 on
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|o<address>.4
 
|0
 
|0
|R
+
|RW
|input pin 4 off
+
|output pin 4 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 4 on
+
|output pin 4 on
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.1
+
|rowspan="2"|o<address>.5
 
|0
 
|0
|R
+
|RW
|input pin 1 off
+
|output pin 5 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 1 on
+
|output pin 5 on
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.2
+
|rowspan="2"|o<address>.6
 
|0
 
|0
|R
+
|RW
|input pin 2 off
+
|output pin 6 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 2 on
+
|output pin 6 on
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.3
+
|rowspan="2"|o<address>.7
 
|0
 
|0
|R
+
|RW
|input pin 3 off
+
|output pin 7 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 3 on
+
|output pin 7 on
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.4
+
|rowspan="2"|o<address>.8
 
|0
 
|0
|R
+
|RW
|input pin 4 off
+
|output pin 8 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 4 on
+
|output pin 8 on
 
|-
 
|-
 
|}
 
|}
  
=== DF2R ===
+
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
The DF2R is an output module with 2 relay outputs.
+
 
It uses one address in the DOMINO bus.
+
----
 +
 
 +
=== MODPNP ===
 +
 
 +
8 positive logic (PNP) “open collector” digital output module.
 +
 
 +
It uses one output address in the range 1 to 127 of the Contatto bus.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,592: Line 1,741:
 
|-
 
|-
  
|rowspan="2"|o.<address>.1
+
|rowspan="2"|o<address>.1
|0<br/>off
+
|0
 
|RW
 
|RW
 
|output pin 1 off
 
|output pin 1 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
 
|output pin 1 on
 
|output pin 1 on
 
|-
 
|-
  
|rowspan="2"|o.<address>.2
+
|rowspan="2"|o<address>.2
|0<br/>off
+
|0
 
|RW
 
|RW
 
|output pin 2 off
 
|output pin 2 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
 
|output pin 2 on
 
|output pin 2 on
 
|-
 
|-
|}
 
  
=== DF4R, DF4RP ===
+
|rowspan="2"|o<address>.3
The DF4R (DF4RP) is an output module with 4 relay outputs.
+
|0
It uses one address in the DOMINO bus.
+
|RW
 
+
|output pin 3 off
{| class="wikitable"
+
|-
!ID
+
|1
!Value
+
|RW
!R/W
+
|output pin 3 on
!Description
 
 
|-
 
|-
  
|rowspan="2"|o.<address>.1
+
|rowspan="2"|o<address>.4
|0<br/>off
+
|0
 
|RW
 
|RW
|output pin 1 off
+
|output pin 4 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|output pin 1 on
+
|output pin 4 on
 
|-
 
|-
  
|rowspan="2"|o.<address>.2
+
|rowspan="2"|o<address>.5
|0<br/>off
+
|0
 
|RW
 
|RW
|output pin 2 off
+
|output pin 5 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|output pin 2 on
+
|output pin 5 on
 
|-
 
|-
  
|rowspan="2"|o.<address>.3
+
|rowspan="2"|o<address>.6
|0<br/>off
+
|0
 
|RW
 
|RW
|output pin 3 off
+
|output pin 6 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|output pin 3 on
+
|output pin 6 on
 
|-
 
|-
  
|rowspan="2"|o.<address>.4
+
|rowspan="2"|o<address>.7
|0<br/>off
+
|0
 
|RW
 
|RW
|output pin 4 off
+
|output pin 7 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|output pin 4 on
+
|output pin 7 on
 
|-
 
|-
|}
+
 
 
+
|rowspan="2"|o<address>.8
=== DF4RP/I ===
+
|0
The DF4RP/I is an output module with 4 generic inputs and 4 relay outputs.
+
|RW
It uses one input address and one output address in the DOMINO bus.
+
|output pin 8 off
 +
|-
 +
|1
 +
|RW
 +
|output pin 8 on
 +
|-
 +
|}
 +
 
 +
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
 +
 
 +
----
 +
 
 +
=== MODREL ===
 +
 
 +
8 relay output compact module in DIN 3M housing.
 +
 
 +
It uses one output address in the range 1 to 127 of the Contatto bus.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,676: Line 1,839:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|o<address>.1
|0
 
|R
 
|input pin 1 off
 
|-
 
|1
 
|R
 
|input pin 1 on
 
|-
 
 
 
|rowspan="2"|o.<address>.1
 
 
|0
 
|0
 
|RW
 
|RW
Line 1,696: Line 1,849:
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|rowspan="2"|o<address>.2
|0
 
|R
 
|input pin 2 off
 
|-
 
|1
 
|R
 
|input pin 2 on
 
|-
 
 
 
|rowspan="2"|o.<address>.2
 
 
|0
 
|0
 
|RW
 
|RW
Line 1,716: Line 1,859:
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="2"|o<address>.3
|0
 
|R
 
|input pin 3 off
 
|-
 
|1
 
|R
 
|input pin 3 on
 
|-
 
 
 
|rowspan="2"|o.<address>.3
 
 
|0
 
|0
 
|RW
 
|RW
Line 1,736: Line 1,869:
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|o<address>.4
 
|0
 
|0
|R
+
|RW
|input pin 4 off
+
|output pin 4 off
 +
|-
 +
|1
 +
|RW
 +
|output pin 4 on
 +
|-
 +
 
 +
|rowspan="2"|o<address>.5
 +
|0
 +
|RW
 +
|output pin 5 off
 +
|-
 +
|1
 +
|RW
 +
|output pin 5 on
 +
|-
 +
 
 +
|rowspan="2"|o<address>.6
 +
|0
 +
|RW
 +
|output pin 6 off
 +
|-
 +
|1
 +
|RW
 +
|output pin 6 on
 +
|-
 +
 
 +
|rowspan="2"|o<address>.7
 +
|0
 +
|RW
 +
|output pin 7 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 4 on
+
|output pin 7 on
 
|-
 
|-
  
|rowspan="2"|o.<address>.4
+
|rowspan="2"|o<address>.8
 
|0
 
|0
 
|RW
 
|RW
|output pin 4 off
+
|output pin 8 off
 
|-
 
|-
 
|1
 
|1
 
|RW
 
|RW
|output pin 4 on
+
|output pin 8 on
 
|-
 
|-
 
|}
 
|}
  
=== DFDM, DFDI, DFDI2, DFDI2B, DFDT ===
+
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
The DFDM, DFDI, DFDI2, DFDI2B and DFDT are output modules with 1 dimmer output.
+
 
They use one address in the DOMINO bus.
+
----
 +
 
 +
=== MOAN/U ===
 +
 
 +
0÷10V analog output module.
 +
 
 +
It uses one output address in the range 1 to 127 of the Contatto bus.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,768: Line 1,937:
 
|-
 
|-
  
|rowspan="4"|o.<address>
+
|o<address>
|program
+
|x/255
 
|R
 
|R
|program mode
+
|value in fractional format, where 0 &le; x &le; 255
 
|-
 
|-
|fault
+
 
|R
+
|rowspan="3"|o<address>
|dimmer fault
+
|<x%>
 +
|W
 +
|the percentage of signal (0÷100%) applied to the output
 
|-
 
|-
|auto
+
|0...255
|R
+
|W
|auto mode
+
|convert the 8 bits digital code received through the bus in the proper analog level.
 
|-
 
|-
|man
+
|x/y
|R
+
|W
|manual mode
+
|fractional format, formatted as “x/y”, where 0 &le; x &le; y
 
|-
 
|-
 +
|}
 +
 +
----
 +
 +
=== MO420 ===
  
|rowspan="3"|o.<address>.1
+
4÷20mA analog output module.
|off
+
 
|RW
+
It uses one output address in the range 1 to 127 of the Contatto bus.
|dimmer off
 
|-
 
|1...100%
 
|RW
 
|percent dimmer level
 
|-
 
|on
 
|RW
 
|dimmer on at last level
 
|-
 
  
|rowspan="3"|o.<address>.ramp
+
{| class="wikitable"
|save
+
!ID
|RW
+
!Value
|saves the current ramp as default
+
!R/W
|-
+
!Description
|1...30
 
|RW
 
|ramp value in seconds (1 sec steps up to 10 and 2 sec steps up to 30)
 
|-
 
|40, 50, 60
 
|RW
 
|ramp value in seconds (10 sec steps)
 
 
|-
 
|-
  
|o.<address>.setpoint
+
|rowspan="3"|o<address>
|0...1023
+
|<x%>
 
|RW
 
|RW
|setpoint level
+
|the percentage of signal (0÷100%) applied to the output
 
|-
 
|-
 
|o.<address>.hysteresis
 
 
|0...255
 
|0...255
 
|RW
 
|RW
|tolerance level
+
|convert the 8 bits digital code received through the bus in the proper analog level
 
|-
 
|-
 
+
|x/y
|o.<address>.time
 
|0...255
 
 
|RW
 
|RW
|period (seconds)
+
|fractional format, formatted as “x/y”, where 0 &le; x &le; y
 
|-
 
|-
 
|}
 
|}
  
The dimmer level can be set using additional formats besides the standard percent values:
+
----
- absolute positive integer number between 0 and 100
+
 
- percent number, formatted as x%
+
=== MODLC and MODLC-P ===
- fractional format, formatted as “n/m”, where 0 <= n <= m.
+
 
 +
Ambient light regulator module with integrated sensor.
  
=== DFDMX ===
+
It uses one input address and, if enabled by the configuration panel of MCP IDE, one output address with the same value.
The DFDMX is a DMX-512 protocol output module.
 
It uses one address in the DOMINO bus.
 
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,849: Line 2,003:
 
|-
 
|-
  
|o.<address>.<command>
+
|i<address>.lux
|0...255
+
|value equivalent to three times the brightness in lux detected by the sensor
|RW
+
|R
|commands and values according to the DFDMX programming manual
+
|the brightness value in lux detected by the MODLC
 
|-
 
|-
|}
 
  
=== DFDALI ===
+
|i<address>.level
The DFDALI is a DALI interface module. Using the DFDALI you can control up to 32 DALI devices. You can control individual devices, groups or broadcast commands to all devices.
+
|calculated value for the automatic brightness regulation
It uses one input (if enabled) and one output address in the DOMINO bus.
+
|R
 +
|the value to be sent to the dimmer in order to execute the automatic regulation
 +
|-
  
{| class="wikitable"
+
|rowspan="2"|i<address>.mode
!ID
+
|auto
!Value
+
|R
!R/W
+
|automatic regulation
!Description
 
 
|-
 
|-
 
+
|man
|o.<address>
+
|R
|refresh
+
|manual regulation
|RW
 
|queries the DFDALI module to update the current status of all DALI devices
 
 
|-
 
|-
  
|o.<address>
+
|rowspan="2"|i<address>.in
|off
+
|0
|RW
+
|R
|broadcast off command
+
|digital input OFF
 
|-
 
|-
 
+
|1
|o.<address>.all
+
|R
o.<address>.0
+
|digital input ON
|<level>
 
|RW
 
|broadcast level command
 
 
|-
 
|-
  
|rowspan="2"|o.<address>.group.<DALI group>
+
|o<address>.setpoint
|off
+
|setpoint value
 
|RW
 
|RW
|broadcast off command
+
|set the setpoint for the automatic brightness regulation
|-
 
|<level>
 
|RW
 
|group level command
 
 
|-
 
|-
  
|rowspan="3"|o.<address>.<DALI address>
+
|rowspan="2"|o<address>.mode
|off
+
|auto
 
|RW
 
|RW
|turn off a single device
+
|set automatic regulation
 
|-
 
|-
|<level>
+
|man
 
|RW
 
|RW
|set a single device to a specific level
+
|set manual regulation
|-
 
|> 100
 
|RW
 
|special functions, having values between 101 and 255, as defined in the DFDALI manual
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.polling
+
|rowspan="2"|o<address>.in.reset
|off
+
|0
 
|RW
 
|RW
|polling mode is disabled
+
|not active
 
|-
 
|-
|on
+
|1
|RW
+
|R
|polling mode is enabled
+
|force the expiring of the deactivation delay time of the digital input
 
|-
 
|-
  
|rowspan="2"|i.<address>.test
+
|rowspan="2"|o<address>.mode.reset
 
|0
 
|0
 
|RW
 
|RW
|test button not pressed
+
|not active
 
|-
 
|-
 
|1
 
|1
|RW
+
|R
|test button pressed
+
|disable the automatic regulation and it reset the input channel
 
|-
 
|-
 +
|}
 +
 +
----
  
|rowspan="4"|i.<address>.dali
+
=== MOD4-4S ===
|nopower
+
 
|RW
+
4 digital input and 4 power relay output multifunction module.
|power failure on the DALI bus
+
 
|-
+
HSYCO supports two configurations only: four independent outputs, or two shutters.
|open
+
 
|RW
+
When set as four independent outputs, the module must be configured with the same base address for input and output.
|DALI bus is open
 
|-
 
|short
 
|RW
 
|DALI bus is shorted
 
|-
 
|on
 
|RW
 
|DALI bus on
 
|-
 
  
|rowspan="2"|i.<address>.1
+
For example:
|fault
+
<pre>
|RW
+
(I20, O20)
|DALI device 1 reporting a lamp failure
+
</pre>
|-
+
The input address must be enabled. Configuration switches must be set as SW1=OFF, SW2=OFF and SW5=ON.
|unknown
 
|RW
 
|DALI device 1 status unknown
 
|-
 
|}
 
  
The DALI level can be set using additional formats besides the standard percent values:
+
When set as two shutters, the module must be configured with the same base address for input and output.  
- absolute positive integer number between 0 and 100
 
- percent number, formatted as x%
 
- fractional format, formatted as “n/m”, where 0 <= n <= m
 
- special functions, having values between 101 and 255, as defined in the DFDALI manual.
 
  
=== DFDV ===
+
For example:
The DFDV is an output module with 1 output (1-10V for ballast) + 1 generic power relay output.
+
<pre>
It uses one address in the DOMINO bus.
+
(I20, O20, O21)
 +
</pre>
 +
The input address must be enabled. Configuration switches must be set as SW1=ON, SW2=ON and SW5=ON.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 1,976: Line 2,103:
 
|-
 
|-
  
|rowspan="3"|o.<address>.1
+
|rowspan="2"|i<address>.1
|off
+
|0
|RW
+
|R
|dimmer off
+
|input pin 1 off
 
|-
 
|-
|1...100%
+
|1
|RW
+
|R
|percent dimmer level
+
|input pin 1 on
 +
|-
 +
 
 +
|rowspan="2"|i<address>.2
 +
|0
 +
|R
 +
|input pin 2 off
 
|-
 
|-
|on
+
|1
|RW
+
|R
|dimmer on at last level
+
|input pin 2 on
 
|-
 
|-
  
|rowspan="2"|o.<address>.2
+
|rowspan="2"|i<address>.3
 
|0
 
|0
|RW
+
|R
|output pin 1 off
+
|input pin 3 off
 
|-
 
|-
 
|1
 
|1
|RW
+
|R
|output pin 1 on
+
|input pin 3 on
 
|-
 
|-
|}
 
  
The dimmer level can be set using additional formats besides the standard percent values:
+
|rowspan="2"|i<address>.4
- absolute positive integer number between 0 and 100
+
|0
- fractional format, formatted as “n/m”, where 0 <= n <= m.
+
|R
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
+
|input pin 4 off
 
+
|-
=== DFTP ===
+
|1
The DFTP is an output module for 2 shutters.
+
|R
It uses one output address in the DOMINO bus.
+
|input pin 4 on
 
 
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
  
|rowspan="6"|o.<address>.1
+
|rowspan="6"|o<address>.1
 
|up
 
|up
 
|RW
 
|RW
Line 2,026: Line 2,152:
 
|shutter down command
 
|shutter down command
 
|-
 
|-
|stop<br/>off<br/>0
+
|stop
 
|RW
 
|RW
 
|shutter stop command
 
|shutter stop command
 
|-
 
|-
 
|unknown
 
|unknown
|RW
+
|R
 
|unknown state
 
|unknown state
 
|-
 
|-
Line 2,043: Line 2,169:
 
|-
 
|-
  
|rowspan="6"|o.<address>.2
+
|rowspan="6"|o<address+1>.1
 
|up
 
|up
 
|RW
 
|RW
Line 2,052: Line 2,178:
 
|shutter down command
 
|shutter down command
 
|-
 
|-
|stop<br/>off<br/>0
+
|stop
 
|RW
 
|RW
 
|shutter stop command
 
|shutter stop command
 
|-
 
|-
 
|unknown
 
|unknown
|RW
+
|R
 
|unknown state
 
|unknown state
 
|-
 
|-
Line 2,069: Line 2,195:
 
|-
 
|-
  
|}
+
|rowspan="2"|o<address>.1
 
+
|0
=== DFTP/I ===
+
|RW
The DFTP is an input/output module for 2 shutters and 4 generic inputs.
+
|output pin 1 off
It uses one input and one output address in the DOMINO bus.
+
|-
 
+
|1
{| class="wikitable"
+
|RW
!ID
+
|output pin 1 on
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|o<address>.2
 
|0
 
|0
|R
+
|RW
|input pin 1 off
+
|output pin 2 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
|input pin 1 on
+
|output pin 2 on
 
|-
 
|-
  
|rowspan="6"|o.<address>.1
+
|rowspan="2"|o<address>.3
|up
+
|0
 
|RW
 
|RW
|shutter up command
+
|output pin 3 off
 
|-
 
|-
|down
+
|1
 
|RW
 
|RW
|shutter down command
+
|output pin 3 on
 
|-
 
|-
|stop<br/>off<br/>0
+
 
 +
|rowspan="2"|o<address>.4
 +
|0
 
|RW
 
|RW
|shutter stop command
+
|output pin 4 off
 
|-
 
|-
|unknown
+
|1
 
|RW
 
|RW
|unknown state
+
|output pin 4 on
 
|-
 
|-
|offup
+
|}
|RW
+
 
|shutter off, up position
+
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
 +
 
 +
----
 +
 
 +
=== MOD2-2R ===
 +
 
 +
2 digital input and 2 power relay output module.
 +
 
 +
It uses one input address and one output address in the range 1 to 127 of the Contatto bus.
 +
 
 +
The input and the output addresses may be the same or they can be different each one to the other.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 +
|-
 +
 
 +
|rowspan="2"|i<address>.1
 +
|0
 +
|R
 +
|input pin 1 off
 
|-
 
|-
|offdown
+
|1
|RW
+
|R
|shutter off, down position
+
|input pin 1 on
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|rowspan="2"|i<address>.2
 
|0
 
|0
 
|R
 
|R
Line 2,128: Line 2,275:
 
|-
 
|-
  
|rowspan="6"|o.<address>.2
+
|rowspan="2"|o<address>.1
|up
+
|0
 
|RW
 
|RW
|shutter up command
+
|output pin 1 off
 
|-
 
|-
|down
+
|1
 
|RW
 
|RW
|shutter down command
+
|output pin 1 on
 
|-
 
|-
|stop<br/>off<br/>0
+
 
 +
|rowspan="2"|o<address>.2
 +
|0
 
|RW
 
|RW
|shutter stop command
+
|output pin 2 off
 
|-
 
|-
|unknown
+
|1
 
|RW
 
|RW
|unknown state
+
|output pin 2 on
 
|-
 
|-
|offup
+
 
|RW
+
|}
|shutter off, up position
+
 
|-
+
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
|offdown
+
 
|RW
+
----
|shutter off, down position
+
 
 +
=== MOD4-4R ===
 +
 
 +
4 digital input and 4 digital output module.
 +
 
 +
It uses one input address and one output address in the range 1 to 127 of the Contatto bus.
 +
 
 +
The input and the output addresses may be the same or they can be different each one to the other.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="2"|i<address>.1
 
|0
 
|0
 
|R
 
|R
|input pin 3 off
+
|input pin 1 off
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 3 on
+
|input pin 1 on
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|i<address>.2
 
|0
 
|0
 
|R
 
|R
|input pin 4 off
+
|input pin 2 off
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|input pin 4 on
+
|input pin 2 on
 
|-
 
|-
  
|}
+
|rowspan="2"|i<address>.3
 
+
|0
=== DFTR ===
+
|R
The DFTR is an output module with 1 shutter output and 1 relay output.
+
|input pin 3 off
It uses one address in the DOMINO bus.
 
 
 
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
 
+
|1
|rowspan="5"|o.<address>.1
 
|up
 
 
|R
 
|R
|shutter up
+
|input pin 3 on
 
|-
 
|-
|down
+
 
 +
|rowspan="2"|i<address>.4
 +
|0
 
|R
 
|R
|shutter down
+
|input pin 4 off
 
|-
 
|-
|unknown
+
|1
 
|R
 
|R
|unknown state
+
|input pin 4 on
 
|-
 
|-
|offup
+
 
|R
+
|rowspan="2"|o<address>.1
|shutter offup
+
|0
 +
|RW
 +
|output pin 1 off
 
|-
 
|-
|offdown
+
|1
|R
+
|RW
|shutter offdown
+
|output pin 1 on
 
|-
 
|-
  
|rowspan="2"|o.<address>.2
+
|rowspan="2"|o<address>.2
 
|0
 
|0
|R
+
|RW
 
|output pin 2 off
 
|output pin 2 off
 
|-
 
|-
 
|1
 
|1
|R
+
|RW
 
|output pin 2 on
 
|output pin 2 on
 
|-
 
|-
  
|}
+
|rowspan="2"|o<address>.3
 
+
|0
=== DF4IL ===
+
|RW
The DF4IL is an input/output module with 4 digital inputs and 4 digital open collector outputs for LEDs.
+
|output pin 3 off
It uses one input and one output address in the DOMINO bus.
+
|-
 
+
|1
{| class="wikitable"
+
|RW
 +
|output pin 3 on
 +
|-
 +
 
 +
|rowspan="2"|o<address>.4
 +
|0
 +
|RW
 +
|output pin 4 off
 +
|-
 +
|1
 +
|RW
 +
|output pin 4 on
 +
|-
 +
 
 +
|}
 +
 
 +
----
 +
 
 +
=== MOD2DM ===
 +
 
 +
2x300W dimmer module.
 +
 
 +
It uses 2 output addresses (one for each dimmer channel) and 2 input addresses.
 +
 
 +
HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON.
 +
 
 +
{| class="wikitable"
 
!ID
 
!ID
 
!Value
 
!Value
Line 2,232: Line 2,415:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|i<address>
|0<br/>off
+
|0...100
 
|R
 
|R
|input pin 1 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|R
 
|R
|input pin 1 on
+
|dimmer off
 
|-
 
|-
  
|rowspan="2"|o.<address>.1
+
|rowspan="2"|i<address+1>
|0<br/>off
+
|0...100
|RW
 
|LED 1 off
 
|-
 
|1<br/>on
 
|RW
 
|LED 1 on
 
|-
 
 
 
|rowspan="2"|i.<address>.2
 
|0<br/>off
 
 
|R
 
|R
|input pin 2 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|R
 
|R
|input pin 2 on
+
|dimmer off
 
|-
 
|-
  
|rowspan="2"|o.<address>.2
+
|rowspan="3"|o<address>
|0<br/>off
+
|0...100
 
|RW
 
|RW
|LED 2 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|RW
 
|RW
|LED 2 on
+
|dimmer off
 
|-
 
|-
 
+
|101...255
|rowspan="2"|i.<address>.3
+
|W
|0<br/>off
+
|command (see MOD2DM commands table)
|R
 
|input pin 3 off
 
|-
 
|1<br/>on
 
|R
 
|input pin 3 on
 
 
|-
 
|-
  
|rowspan="2"|o.<address>.3
+
|rowspan="3"|o<address+1>
|0<br/>off
+
|0...100
 
|RW
 
|RW
|LED 3 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|RW
 
|RW
|LED 3 on
+
|dimmer off
 
|-
 
|-
 
+
|101...255
|rowspan="2"|i.<address>.4
+
|W
|0<br/>off
+
|command (see MOD2DM commands table)
|R
 
|input pin 4 off
 
|-
 
|1<br/>on
 
|R
 
|input pin 4 on
 
 
|-
 
|-
  
|rowspan="2"|o.<address>.4
 
|0<br/>off
 
|RW
 
|LED 4 off
 
|-
 
|1<br/>on
 
|RW
 
|LED 4 on
 
|-
 
 
|}
 
|}
  
=== DF8IL ===
+
The dimmer level can be set using additional formats besides the standard percent values:
The DF8IL is an input/output module with 8 digital inputs and 8 digital open collector outputs for LEDs.
+
*absolute positive integer number between 0 and 100
It uses 4 input and 4 output addresses in the DOMINO bus.
+
*percent number, formatted as x%
 +
*fractional format, formatted as “n/m”, where 0 <= n <= m.
 +
 
 +
----
 +
 
 +
=== MOD2DV ===
 +
 
 +
Dual 1-10V output for electronic ballast driving.
 +
 
 +
It uses 2 output addresses (one for each dimmer channel) and 2 input addresses.
 +
 
 +
HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 2,324: Line 2,487:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|i<address>
|0<br/>off
+
|0...100
 
|R
 
|R
|input pin 1 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|R
 
|R
|input pin 1 on
+
|dimmer off
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|rowspan="2"|i<address+1>
|0<br/>off
+
|0...100
 
|R
 
|R
|input pin 2 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|R
 
|R
|input pin 2 on
+
|dimmer off
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="3"|o<address>
|0<br/>off
+
|0...100
|R
+
|RW
|input pin 3 off
+
|brightness level according to current ramp
 +
|-
 +
|off
 +
|RW
 +
|dimmer off
 
|-
 
|-
|1<br/>on
+
|101...255
|R
+
|W
|input pin 3 on
+
|command (see MOD2DV commands table)
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="3"|o<address+1>
|0<br/>off
+
|0...100
|R
+
|RW
|input pin 4 off
+
|brightness level according to current ramp
 +
|-
 +
|off
 +
|RW
 +
|dimmer off
 +
|-
 +
|101...255
 +
|W
 +
|command (see MOD2DV commands table)
 
|-
 
|-
|1<br/>on
+
 
|R
+
|}
|input pin 4 on
+
 
 +
The dimmer level can be set using additional formats besides the standard percent values:
 +
*absolute positive integer number between 0 and 100
 +
*percent number, formatted as x%
 +
*fractional format, formatted as “n/m”, where 0 <= n <= m.
 +
 
 +
----
 +
 
 +
=== MOD8IL ===
 +
 
 +
8 digital input – 8 LED output module for wall box.
 +
 
 +
It uses 1 input address and 1 output address.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.1
+
|rowspan="2"|i<address>.1
|0<br/>off
+
|0
 
|R
 
|R
|input pin 5 off
+
|input pin 1 off
 
|-
 
|-
|1<br/>on
+
|1
 
|R
 
|R
|input pin 5 on
+
|input pin 1 on
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.2
+
|rowspan="2"|i<address>.2
|0<br/>off
+
|0
 
|R
 
|R
|input pin 6 off
+
|input pin 2 off
 
|-
 
|-
|1<br/>on
+
|1
 
|R
 
|R
|input pin 6 on
+
|input pin 2 on
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.3
+
|rowspan="2"|i<address>.3
|0<br/>off
+
|0
 
|R
 
|R
|input pin 7 off
+
|input pin 3 off
 
|-
 
|-
|1<br/>on
+
|1
 
|R
 
|R
|input pin 7 on
+
|input pin 3 on
 
|-
 
|-
  
|rowspan="2"|i.<address+1>.4
+
|rowspan="2"|i<address>.4
|0<br/>off
+
|0
 
|R
 
|R
|input pin 8 off
+
|input pin 4 off
 
|-
 
|-
|1<br/>on
+
|1
 
|R
 
|R
|input pin 8 on
+
|input pin 4 on
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.1
+
|rowspan="2"|i<address>.5
|0<br/>off
+
|0
 
|R
 
|R
|LED 1 is off
+
|input pin 5 off
 
|-
 
|-
|1<br/>on
+
|1
 
|R
 
|R
|LED 1 is on
+
|input pin 5 on
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.2
+
|rowspan="2"|i<address>.6
|0<br/>off
+
|0
 
|R
 
|R
|LED 2 is off
+
|input pin 6 off
 
|-
 
|-
|1<br/>on
+
|1
 
|R
 
|R
|LED 2 is on
+
|input pin 6 on
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.3
+
|rowspan="2"|i<address>.7
|0<br/>off
+
|0
 
|R
 
|R
|LED 3 is off
+
|input pin 7 off
 
|-
 
|-
|1<br/>on
+
|1
 
|R
 
|R
|LED 3 is on
+
|input pin 7 on
 
|-
 
|-
  
|rowspan="2"|i.<address+2>.4
+
|rowspan="2"|i<address>.8
|0<br/>off
+
|0
 
|R
 
|R
|LED 4 is off
+
|input pin 8 off
 
|-
 
|-
|1<br/>on
+
|1
 
|R
 
|R
|LED 4 is on
+
|input pin 8 on
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.1
+
|rowspan="2"|o<address>.1
|0<br/>off
+
|0
|R
+
|RW
|LED 5 is off
+
|output pin 1 off
 
|-
 
|-
|1<br/>on
+
|1
|R
+
|RW
|LED 5 is on
+
|output pin 1 on
 
|-
 
|-
  
|rowspan="2"|i.<address+3>.2
+
|rowspan="2"|o<address>.2
|0<br/>off
+
|0
|R
 
|LED 6 is off
 
|-
 
|1<br/>on
 
|R
 
|LED 6 is on
 
|-
 
 
 
|rowspan="2"|i.<address+3>.3
 
|0<br/>off
 
|R
 
|LED 7 is off
 
|-
 
|1<br/>on
 
|R
 
|LED 7 is on
 
|-
 
 
 
|rowspan="2"|i.<address+3>.4
 
|0<br/>off
 
|R
 
|LED 8 is off
 
|-
 
|1<br/>on
 
|R
 
|LED 8 is on
 
|-
 
 
 
|rowspan="2"|v.<address+2>.1
 
|0<br/>off
 
 
|RW
 
|RW
|LED 1 is off
+
|output pin 2 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|LED 1 is on
+
|output pin 2 on
 
|-
 
|-
  
|rowspan="2"|v.<address+2>.2
+
|rowspan="2"|o<address>.3
|0<br/>off
+
|0
 
|RW
 
|RW
|LED 2 is off
+
|output pin 3 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|LED 2 is on
+
|output pin 3 on
 
|-
 
|-
  
|rowspan="2"|v.<address+2>.3
+
|rowspan="2"|o<address>.4
|0<br/>off
+
|0
 
|RW
 
|RW
|LED 3 is off
+
|output pin 4 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|LED 3 is on
+
|output pin 4 on
 
|-
 
|-
  
|rowspan="2"|v.<address+2>.4
+
|rowspan="2"|o<address>.5
|0<br/>off
+
|0
 
|RW
 
|RW
|LED 4 is off
+
|output pin 5 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|LED 4 is on
+
|output pin 5 on
 
|-
 
|-
  
|rowspan="2"|v.<address+3>.1
+
|rowspan="2"|o<address>.6
|0<br/>off
+
|0
 
|RW
 
|RW
|LED 5 is off
+
|output pin 6 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|LED 5 is on
+
|output pin 6 on
 
|-
 
|-
  
|rowspan="2"|v.<address+3>.2
+
|rowspan="2"|o<address>.7
|0<br/>off
+
|0
 
|RW
 
|RW
|LED 6 is off
+
|output pin 7 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|LED 6 is on
+
|output pin 7 on
 
|-
 
|-
  
|rowspan="2"|v.<address+3>.3
+
|rowspan="2"|o<address>.8
|0<br/>off
+
|0
 
|RW
 
|RW
|LED 7 is off
+
|output pin 8 off
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|LED 7 is on
+
|output pin 8 on
 
|-
 
|-
 +
|}
  
|rowspan="2"|v.<address+3>.4
+
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
|0<br/>off
+
 
|RW
+
----
|LED 8 is off
+
 
|-
+
=== MOD4DV ===
|1<br/>on
 
|RW
 
|LED 8 is on
 
|-
 
  
|}
+
Quad 0-10V output module for generic applications or for external dimmers control.
  
Note that the first two output addresses are reserved and should not be used. Use address + 2 and address + 3 to control the LEDs.
+
It uses 4 consecutive output addresses (one for each dimmer channel) and 4 input addresses.  
  
=== DFIGLASS ===
+
HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON, SW5=OFF.
The DFIGLASS is an input/output module with 6 touch buttons with addressable LEDs and a buzzer for audio feedback.
 
It uses 1 input and 1 output addresses in the DOMINO bus.
 
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 2,579: Line 2,737:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|rowspan="2"|i<address>
|0<br/>off
+
|0...100
 
|R
 
|R
|button 1 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|R
 
|R
|button 1 on
+
|dimmer off
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|rowspan="2"|i<address+1>
|0<br/>off
+
|0...100
 
|R
 
|R
|button 2 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|R
 
|R
|button 2 on
+
|dimmer off
 
|-
 
|-
  
|rowspan="2"|i.<address>.3
+
|rowspan="2"|i<address+2>
|0<br/>off
+
|0...100
 
|R
 
|R
|button 3 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|R
 
|R
|button 3 on
+
|dimmer off
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|rowspan="2"|i<address+3>
|0<br/>off
+
|0...100
 
|R
 
|R
|button 4 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|R
 
|R
|button 4 on
+
|dimmer off
 
|-
 
|-
  
|rowspan="2"|i.<address>.5
+
|rowspan="3"|o<address>
|0<br/>off
+
|0...100
|R
+
|RW
|button 5 off
+
|brightness level according to current ramp
 +
|-
 +
|off
 +
|RW
 +
|dimmer off
 
|-
 
|-
|1<br/>on
+
|101...255
|R
+
|W
|button 5 on
+
|command (see MOD4DV commands table)
 
|-
 
|-
  
|rowspan="2"|i.<address>.6
+
|rowspan="3"|o<address+1>
|0<br/>off
+
|0...100
|R
+
|RW
|button 6 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
|R
+
|RW
|button 6 on
+
|dimmer off
 
|-
 
|-
 
+
|101...255
|rowspan="2"|i.<address>.fault
+
|W
|0<br/>off
+
|command (see MOD4DV commands table)
|R
 
|no fault
 
|-
 
|1<br/>on
 
|R
 
|touch keypad fault
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.led.1
+
|rowspan="3"|o<address+2>
|0<br/>off
+
|0...100
 
|RW
 
|RW
|led 1 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|RW
 
|RW
|led 1 on
+
|dimmer off
 
|-
 
|-
 
+
|101...255
|rowspan="2"|i.<address>.led.2
+
|W
|0<br/>off
+
|command (see MOD4DV commands table)
|RW
 
|led 2 off
 
|-
 
|1<br/>on
 
|RW
 
|led 2 on
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.led.3
+
|rowspan="3"|o<address+3>
|0<br/>off
+
|0...100
 
|RW
 
|RW
|led 3 off
+
|brightness level according to current ramp
 
|-
 
|-
|1<br/>on
+
|off
 
|RW
 
|RW
|led 3 on
+
|dimmer off
 
|-
 
|-
 
+
|101...255
|rowspan="2"|i.<address>.led.4
+
|W
|0<br/>off
+
|command (see MOD4DV commands table)
|RW
 
|led 4 off
 
|-
 
|1<br/>on
 
|RW
 
|led 4 on
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.led.5
+
|}
|0<br/>off
 
|RW
 
|led 5 off
 
|-
 
|1<br/>on
 
|RW
 
|led 5 on
 
|-
 
  
|rowspan="2"|i.<address>.led.6
+
The dimmer level can be set using additional formats besides the standard percent values:
|0<br/>off
+
*absolute positive integer number between 0 and 100
|RW
+
*percent number, formatted as x%
|led 6 off
+
*fractional format, formatted as “x/y”, where 0 <= x <= y
|-
+
*values in the range 101÷255. Values and commands are described in the MOD4DV Programming Handbook (Operation from the bus, page 3).
|1<br/>on
 
|RW
 
|led 6 on
 
|-
 
  
|rowspan="2"|i.<address>.backlight
+
----
|0<br/>off
 
|RW
 
|backlight off
 
|-
 
|1<br/>on
 
|RW
 
|backlight on
 
|-
 
  
|rowspan="2"|i.<address>.buzzer
+
=== MODDMX ===
|0<br/>off
 
|RW
 
|buzzer disabled
 
|-
 
|1<br/>on
 
|RW
 
|buzzer enabled
 
|-
 
  
|}
+
ModDMX module allows to handle, through the Contatto bus, up to 32 DMX devices. ModDMX module makes possible the communication on the first 64 of 512 DMX channels allowed by this protocol.
  
=== DF4I/V ===
+
It uses 1 output address, 1-channel 16-bit.
The DF4I/V is an input/output module with 4 digital inputs and 12 digital virtual outputs.
 
It uses four consecutive addresses in the DOMINO bus.
 
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 2,742: Line 2,856:
 
|-
 
|-
  
|rowspan="2"|i.<address>.1
+
|o<address>.<DMX address>
|0<br/>off
+
|0...100
|R
+
|RW
|input pin 1 off
+
|Values and commands are described in the MODDMX Programming Handbook
|-
 
|1<br/>on
 
|R
 
|input pin 1 on
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.2
+
|}
|0<br/>off
+
 
|R
+
----
|input pin 2 off
+
 
|-
+
=== MODDALI ===
|1<br/>on
+
 
|R
+
ModDALI module allows the management, through the Contatto bus, of 4 DALI lines upon it's possible to connect up to 32 devices for line (or channel). In this way it's possible to control and regulate up to 128 DALI ballasts (or other similar devices).
|input pin 2 on
+
 
|-
+
It uses 1 output address and, if enabled, 1 input address with the same value.
  
|rowspan="2"|i.<address>.3
+
{| class="wikitable"
|0<br/>off
+
!ID
|R
+
!Value
|input pin 3 off
+
!R/W
|-
+
!Description
|1<br/>on
 
|R
 
|input pin 3 on
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.4
+
|o<address>.<channel>
|0<br/>off
+
|refresh
|R
+
|RW
|input pin 4 off
+
|update the state of the DALI devices
|-
 
|1<br/>on
 
|R
 
|input pin 4 on
 
 
|-
 
|-
  
|rowspan="2"|v.<address+1>.1
+
|rowspan="2"|o<address>.<channel><br/>o<address>.<channel>.all<br/>o<address>.<channel>.0
|0<br/>off
+
|off
 
|RW
 
|RW
|virtual pin 1 off
+
|switch off all available DALI devices
 
|-
 
|-
|1<br/>on
+
|<level>
 
|RW
 
|RW
|virtual pin 1 on
+
|set a level for all available devices
 
|-
 
|-
  
|rowspan="2"|v.<address+1>.2
+
|rowspan="2"|o<address>.<channel>.group.<DALI group>
|0<br/>off
+
|off
 
|RW
 
|RW
|virtual pin 2 off
+
|switch off all DALI devices on that group
 
|-
 
|-
|1<br/>on
+
|<level>
 
|RW
 
|RW
|virtual pin 2 on
+
|set a level for all DALI devices in that group
 
|-
 
|-
  
|rowspan="2"|v.<address+1>.3
+
|rowspan="4"|o<address>.<channel>.<DALI address>
|0<br/>off
+
|off
 
|RW
 
|RW
|virtual pin 3 off
+
|switch off a single DALI device
 
|-
 
|-
|1<br/>on
+
|<level>
 
|RW
 
|RW
|virtual pin 3 on
+
|set a level for a single DALI device
 
|-
 
|-
 
+
|fault
|rowspan="2"|v.<address+1>.4
+
|R
|0<br/>off
+
|DALI device fault
|RW
 
|virtual pin 4 off
 
 
|-
 
|-
|1<br/>on
+
|>100
 
|RW
 
|RW
|virtual pin 4 on
+
|special functions: possible values are described in the MODDALI Programming Handbook
 
|-
 
|-
  
|rowspan="2"|v.<address+2>.1
+
|rowspan="2"|i<address>.<channel>.polling
|0<br/>off
+
|off
 
|RW
 
|RW
|virtual pin 1 off
+
|polling disabled
 
|-
 
|-
|1<br/>on
+
|on
 
|RW
 
|RW
|virtual pin 1 on
+
|polling enabled
 
|-
 
|-
  
|rowspan="2"|v.<address+2>.2
+
|rowspan="2"|i<address>.<channel>.test
|0<br/>off
+
|0
 
|RW
 
|RW
|virtual pin 2 off
+
|test button not pressed
 
|-
 
|-
|1<br/>on
+
|1
 
|RW
 
|RW
|virtual pin 2 on
+
|test button pressed
 
|-
 
|-
  
|rowspan="2"|v.<address+2>.3
+
|rowspan="4"|i<address>.<channel>.dali
|0<br/>off
+
|nopower
 
|RW
 
|RW
|virtual pin 3 off
+
|lamp failure
 
|-
 
|-
|1<br/>on
+
|open
 
|RW
 
|RW
|virtual pin 3 on
+
|DALI line broken
 
|-
 
|-
 
+
|short
|rowspan="2"|v.<address+2>.4
 
|0<br/>off
 
 
|RW
 
|RW
|virtual pin 4 off
+
|DALI line short circuit
 
|-
 
|-
|1<br/>on
+
|on
 
|RW
 
|RW
|virtual pin 4 on
+
|on DALI line
 
|-
 
|-
  
|rowspan="2"|v.<address+3>.1
+
|rowspan="2"|i<address>.<channel>.1
|0<br/>off
+
|fault
 
|RW
 
|RW
|virtual pin 1 off
+
|ballast 1 lamp failure
 
|-
 
|-
|1<br/>on
+
|unknown
|RW
+
|R
|virtual pin 1 on
+
|ballast 1 lamp unknown state
 
|-
 
|-
  
|rowspan="2"|v.<address+3>.2
+
|}
|0<br/>off
+
 
|RW
+
The channel level can be set using additional formats besides the standard percent values:
|virtual pin 2 off
+
*absolute positive integer number between 0 and 100
|-
+
*percent number, formatted as x%
|1<br/>on
+
*fractional format, formatted as “x/y”, where 0 <= x <= y
|RW
+
*values in the range 101÷255. Values and commands are described in the MODDALI Programming Handbook.
|virtual pin 2 on
+
 
|-
+
----
  
|rowspan="2"|v.<address+3>.3
+
=== CLIMA2 ===
|0<br/>off
 
|RW
 
|virtual pin 3 off
 
|-
 
|1<br/>on
 
|RW
 
|virtual pin 3 on
 
|-
 
  
|rowspan="2"|v.<address+3>.4
+
Module for the regulation of the ambient temperature.
|0<br/>off
 
|RW
 
|virtual pin 4 off
 
|-
 
|1<br/>on
 
|RW
 
|virtual pin 4 on
 
|-
 
|}
 
  
=== DFAI ===
+
It uses 1 input and 1 output address that are equal each one to the other, so only a base address is needed.
The DFAI is an input module (0-10V) with 2 analog inputs.
 
It uses two consecutive input addresses in the DOMINO bus.
 
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 2,914: Line 2,994:
 
|-
 
|-
  
|i.<address>
+
|rowspan="2"|i<address>
|0...1000
+
|on
 
|R
 
|R
|input voltage in Volt/100
+
|zone on
 
|-
 
|-
 
+
|off
|i.<address+1>
 
|0...1000
 
 
|R
 
|R
|input voltage in Volt/100
+
|zone off
 
|-
 
|-
|}
 
  
=== DFLUX, DFSUN ===
+
|rowspan="2"|i<address>.mode
The DFLUX and DFSUN are input modules with 1 analog light sensor.
+
|summer
They use one input address in the DOMINO bus.
+
|R
 
+
|summer mode
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
 
+
|winter
|i.<address>
 
|0...1023
 
 
|R
 
|R
|lux level (raw level, not translated to the lux range)
+
|winter mode
 
|-
 
|-
|}
 
  
=== DFCT ===
+
|rowspan="3"|i<address>.status
The DFCT is an input/output temperature sensor module.
+
|off
It uses two consecutive input addresses and five consecutive output addresses in the DOMINO bus.
+
|R
 
+
|off status
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
 
+
|heating
|rowspan="2"|i.<address>.mode
 
|winter
 
 
|R
 
|R
|winter mode
+
|heating request
 
|-
 
|-
|summer
+
|cooling
 
|R
 
|R
|summer mode
+
|cooling request
 
|-
 
|-
  
|rowspan="4"|i.<address>.fan
+
|rowspan="4"|i<address>.fan
 +
|off
 +
|R
 +
|fan off
 +
|-
 
|min
 
|min
 
|R
 
|R
|min fan speed
+
|min speed
 
|-
 
|-
 
|med
 
|med
 
|R
 
|R
|medium fan speed
+
|med speed
 
|-
 
|-
 
|max
 
|max
 
|R
 
|R
|max fan speed
+
|max speed
|-
 
|off
 
|R
 
|fan off
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.fan.mode
+
|rowspan="2"|i<address>.temp
|man
+
|fault
 
|R
 
|R
|manual fan mode
+
|NTC probe fault
 
|-
 
|-
|auto
+
|<temp>
 
|R
 
|R
|auto fan mode
+
|ambient temperature value, in C/10
 
|-
 
|-
  
|rowspan="5"|i.<address>.setpoint
+
|i<address>.setpoint.temp
|1
+
|<temp>
 
|R
 
|R
|setpoint 1
+
|real setpoint value, in C/10
 
|-
 
|-
|2
+
 
 +
|i<address>.knob
 +
|0 ... 1000
 
|R
 
|R
|setpoint 2
+
|position of rotary knob
 +
|-
 +
 
 +
|rowspan="2"|o<address>.mode
 +
|summer
 +
|RW
 +
|set summer
 +
|-
 +
|winter
 +
|RW
 +
|set winter
 
|-
 
|-
|3
+
 
|R
+
|rowspan="2"|o<address>
|setpoint 3
+
|on
 +
|RW
 +
|zone on
 
|-
 
|-
 
|off
 
|off
|R
+
|RW
|off
+
|zone off
 
|-
 
|-
|man
+
 
|R
+
|o<address>.setpoint.temp
|manual setpoint
+
|0...400
 +
|RW
 +
|set and read the value of central setpoint (temp in C/10)
 
|-
 
|-
  
|rowspan="2"|i.<address>.setpoint.mode
+
|o<address>.setpoint.delta.neg
|man
+
|<temp>
|R
+
|RW
|manual setpoint mode
+
|set and read the MAX negative delta
|-
 
|auto
 
|R
 
|auto setpoint mode
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.temp
+
|o<address>.setpoint.delta.pos
 
|<temp>
 
|<temp>
|R
+
|RW
|temperature value (in C/10)
+
|set and read the MAX positive delta
|-
 
|fault
 
|R
 
|temperature sensor fault
 
 
|-
 
|-
  
|rowspan="3"|i.<address>.status
+
|rowspan="4"|o<address>.led.1
|off
+
|red<br/>r
|R
+
|RW
|off
+
|LED 1 red
 
|-
 
|-
|cooling
+
|green<br/>g
|R
+
|RW
|cooling status mode
+
|LED 1 green
|-
 
|heating
 
|R
 
|heating status mode
 
 
|-
 
|-
 
+
|yellow<br/>y
|rowspan="2"|o.<address>.mode
 
|winter
 
 
|RW
 
|RW
|winter mode
+
|LED 1 yellow
 
|-
 
|-
|summer
+
|off
 
|RW
 
|RW
|summer mode
+
|set off
 
|-
 
|-
  
|rowspan="4"|o.<address>.fan
+
|rowspan="4"|o<address>.led.2
|min
+
|red<br/>r
 
|RW
 
|RW
|min fan speed
+
|LED 2 red
 
|-
 
|-
|med
+
|green<br/>g
 
|RW
 
|RW
|medium fan speed
+
|LED 2 green
 
|-
 
|-
|max
+
|yellow<br/>y
 
|RW
 
|RW
|max fan speed
+
|LED 2 yellow
 
|-
 
|-
 
|off
 
|off
 
|RW
 
|RW
|fan off
+
|set off
 
|-
 
|-
  
|rowspan="2"|o.<address>.fan.mode
+
|rowspan="4"|o<address>.led.3
|man
+
|red<br/>r
 
|RW
 
|RW
|manual fan mode
+
|LED 3 red
 
|-
 
|-
|auto
+
|green<br/>g
 
|RW
 
|RW
|auto fan mode
+
|LED 3 green
 
|-
 
|-
 
+
|yellow<br/>y
|rowspan="5"|o.<address>.setpoint
 
|1
 
 
|RW
 
|RW
|setpoint 1
+
|LED 3 yellow
 
|-
 
|-
|2
+
|off
 
|RW
 
|RW
|setpoint 2
+
|set off
 
|-
 
|-
|3
+
 
 +
|rowspan="4"|o<address>.led.4
 +
|red<br/>r
 
|RW
 
|RW
|setpoint 3
+
|LED 4 red
 
|-
 
|-
|0 <br/> off
+
|green<br/>g
 
|RW
 
|RW
|setpoint off
+
|LED 4 green
 
|-
 
|-
|man
+
|yellow<br/>y
 
|RW
 
|RW
|manual setpoint
+
|LED 4 yellow
 
|-
 
|-
 
+
|off
|o.<address>.setpoint.temp.1
 
|<temp>
 
 
|RW
 
|RW
|temperature setpoint 1 value (in C/10)
+
|set off
 
|-
 
|-
  
|o.<address>.setpoint.temp.2
+
|}
|<temp>
+
 
|RW
+
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
|temperature setpoint 2 value (in C/10)
+
 
|-
+
----
  
|o.<address>.setpoint.temp.3
+
=== MODANA ===
|<temp>
 
|RW
 
|temperature setpoint 3 value (in C/10)
 
|-
 
  
|o.<address>.setpoint.temp.man
+
Network analyzer module for Contatto bus.
|<temp>
 
|RW
 
|temperature manual setpoint 1 value (in C/10)
 
|-
 
  
|o.<address>.program.summer<br/>o.<address>.program.winter
+
It uses, in dynamic mode, up to a maximum of 5 consecutive input addresses and, if enabled, 1 output address equal to the base address.
|refresh
 
|RW
 
|forces to daily summer/winter program for all days of the week
 
|-
 
  
|rowspan="2"|o.<address>.program.summer.<day><br/>o.<address>.program.winter.<day>
+
{{note|The module's firmware should be version 1.5 or later to support negative values for active power readings.}}
|refresh
 
|RW
 
|forces to daily summer/winter program for the reported day (mon:1, sun:7)
 
|-
 
|<s0>...<s47>
 
|RW
 
|48 character represents the daily setpoint program divided in time slots of 30 minutes
 
|-
 
  
|}
+
{{tip|The module must be configured with the same base address for input and output.}}
  
=== DFTZ ===
+
For example:
The DFTZ is an input/output temperature sensor module.
+
<pre>
It uses 3 consecutive input addresses and 4 consecutive output addresses in the DOMINO bus.
+
(I7, O7)
 +
</pre>
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 3,163: Line 3,206:
 
|-
 
|-
  
|rowspan="2"|i.<address>.mode
+
|i<address>.v12
|winter
+
|[V]
 
|R
 
|R
|winter mode
+
|chained voltage phase 1-2
 
|-
 
|-
|summer
+
 
 +
|i<address>.v23
 +
|[V]
 
|R
 
|R
|summer mode
+
|chained voltage phase 2-3
 
|-
 
|-
  
|rowspan="3"|i.<address>.setpoint
+
|i<address>.v31
|comfort
+
|[V]
 
|R
 
|R
|comfort setpoint
+
|chained voltage phase 3-1
 
|-
 
|-
|eco
+
 
 +
|i<address>.vtm
 +
|[V]
 
|R
 
|R
|eco setpoint
+
|average chained voltage
 
|-
 
|-
|off
+
 
 +
|i<address>.i1
 +
|[A]
 
|R
 
|R
|off
+
|current phase 1
 
|-
 
|-
  
|rowspan="2"|i.<address>.temp
+
|i<address>.i2
|<temp>
+
|[A]
 
|R
 
|R
|temperature value (in C/10)
+
|current phase 2
 
|-
 
|-
|fault
+
 
 +
|i<address>.i3
 +
|[A]
 
|R
 
|R
|temperature sensor fault
+
|current phase 3
 
|-
 
|-
  
|rowspan="3"|i.<address>.status
+
|i<address>.itm
|off
+
|[A]
 
|R
 
|R
|off
+
|average current
 
|-
 
|-
|cooling
+
 
 +
|i<address>.ptot
 +
|[W]
 
|R
 
|R
|cooling status mode
+
|total active power
 
|-
 
|-
|heating
+
 
 +
|i<address>.ptotk
 +
|[kW]
 
|R
 
|R
|heating status mode
+
|total active power
 
|-
 
|-
  
|rowspan="2"|o.<address>.mode
+
|i<address>.qtot
|winter
+
|[W]
|RW
+
|R
|winter mode
+
|total reactive power
 
|-
 
|-
|summer
+
 
|RW
+
|i<address>.qtotk
|summer mode
+
|[kW]
 +
|R
 +
|total reactive power
 
|-
 
|-
  
|rowspan="3"|o.<address>.setpoint
+
|i<address>.pf
|comfort
+
|[pf]
|RW
+
|R
|comfort setpoint
+
|total power factor
 
|-
 
|-
|eco
+
 
|RW
+
|i<address>.frequency
|eco setpoint
+
|[Hz]
|-
+
|R
|0<br/>off
+
|frequency
|RW
 
|off
 
 
|-
 
|-
  
|o.<address>.setpoint.temp.comfort
+
|i<address>.v1n
|<temp>
+
|[V]
|RW
+
|R
|comfort setpoint value (in C/10)
+
|voltage phase 1
 
|-
 
|-
  
|o.<address>.setpoint.temp.eco
+
|i<address>.v2n
|<temp>
+
|[V]
|RW
+
|R
|eco setpoint value (in C/10)
+
|voltage phase 2
 
|-
 
|-
  
|o.<address>.setpoint.temp.limit
+
|i<address>.v3n
|<temp>
+
|[V]
|RW
+
|R
|summer/winter setpoint temperature limit (in C/10)
+
|voltage phase 3
 
|-
 
|-
  
|}
+
|i<address>.p1
 +
|[W]
 +
|R
 +
|active power phase 1
 +
|-
  
=== DFRHT ===
+
|i<address>.p1k
The DFRHT is a temperature and humidity sensor.
+
|[kW]
It uses four consecutive input addresses and two consecutive output addresses in the DOMINO bus.
+
|R
 
+
|active power phase 1
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
  
|i.<address>.humidity
+
|i<address>.p2
|0...100
+
|[W]
 
|R
 
|R
|relative percent umidity
+
|active power phase 2
 
|-
 
|-
  
|i.<address>.temp
+
|i<address>.p2k
|<temp>
+
|[kW]
 
|R
 
|R
|temperature value
+
|active power phase 2
 
|-
 
|-
  
|i.<address>.dewpoint
+
|i<address>.p3
|<temp>
+
|[W]
 
|R
 
|R
|dew point value
+
|active power phase 3
 
|-
 
|-
  
|rowspan="4"|i.<address>.dewpoint.limit.1
+
|i<address>.p3k
|0
+
|[kW]
 
|R
 
|R
|dew point is lower than limit 1
+
|active power phase 3
 
|-
 
|-
|1
+
 
 +
|i<address>.q1
 +
|[W]
 
|R
 
|R
|dew point is higher than limit 1
+
|reactive power phase 1
|-
 
|<temp>
 
|RW
 
|dew point limit 1
 
|-
 
|off
 
|RW
 
|limit 1 not set
 
 
|-
 
|-
  
|rowspan="4"|i.<address>.dewpoint.limit.2
+
|i<address>.q1k
|0
+
|[kW]
 
|R
 
|R
|dew point is lower than limit 2
+
|reactive power phase 1
 
|-
 
|-
|1
+
 
 +
|i<address>.q2
 +
|[W]
 
|R
 
|R
|dew point is higher than limit 2
+
|reactive power phase 2
 
|-
 
|-
|<temp>
+
 
|RW
+
|i<address>.q2k
|dew point limit 2
+
|[kW]
 +
|R
 +
|reactive power phase 2
 
|-
 
|-
|off
+
 
|RW
+
|i<address>.q3
|limit 2 not set
+
|[W]
 +
|R
 +
|reactive power phase 3
 
|-
 
|-
  
|}
+
|i<address>.q3k
 +
|[kW]
 +
|R
 +
|reactive power phase 3
 +
|-
  
=== DFMETEO ===
+
|i<address>.pf1
The DFMETEO is the weather sensor module.
+
|[pf]
It uses four consecutive input addresses and three consecutive output addresses in the DOMINO bus.
+
|R
 +
|power factor phase 1
 +
|-
  
{| class="wikitable"
+
|i<address>.pf2
!ID
+
|[pf]
!Value
+
|R
!R/W
+
|power factor phase 2
!Description
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.temp
+
|i<address>.pf3
|<temp>
+
|[pf]
|RW
+
|R
|temperature value (in C/10)
+
|power factor phase 3
 
|-
 
|-
|off
+
 
|RW
+
|i<address>.s1
|limit not set
+
|[VA]
 +
|R
 +
|apparent power phase 1
 
|-
 
|-
  
|rowspan="3"|i.<address>.lux
+
|i<address>.s1k
|<lux*10>
+
|[kVA]
 
|R
 
|R
|lux level according to the DFLUX range
+
|apparent power phase 1
 
|-
 
|-
|<lux>
+
 
|RW
+
|i<address>.s2
|lux limit
+
|[VA]
 +
|R
 +
|apparent power phase 2
 
|-
 
|-
|0
+
 
|RW
+
|i<address>.s2k
|limit not set
+
|[kVA]
 +
|R
 +
|apparent power phase 2
 
|-
 
|-
  
|rowspan="3"|i.<address>.wind
+
|i<address>.s3
|1 m/s /10
+
|[VA]
 
|R
 
|R
|wind value
+
|apparent power phase 3
|-
 
|m/s
 
|RW
 
|wind limit
 
|-
 
|0
 
|RW
 
|limit not set
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.rain
+
|i<address>.s3k
|0
+
|[kVA]
 
|R
 
|R
|no rain
+
|apparent power phase 3
 
|-
 
|-
|1
+
 
 +
|i<address>.stot
 +
|[VA]
 
|R
 
|R
|rain
+
|total apparent power
 
|-
 
|-
  
|rowspan="2"|i.<address>.night
+
|i<address>.hours
|0
+
|[hours]
 
|R
 
|R
|day
+
|hour-meter
 
|-
 
|-
|1
+
 
 +
|i<address>.temperature
 +
|[°C]
 
|R
 
|R
|night
+
|cabinet temperature
 
|-
 
|-
  
|rowspan="2"|i.<address>.temp.limit
+
|i<address>.energy.active
|0
+
|[KWh]
 
|R
 
|R
|measured temp is less than limit
+
|positive active energy
 
|-
 
|-
|1
+
 
 +
|i<address>.energy.activeneg
 +
|[KWh]
 
|R
 
|R
|measured temp is greater than limit
+
|negative active energy
 
|-
 
|-
  
|rowspan="2"|i.<address>.lux.limit
+
|i<address>.energy.reactive
|0
+
|[KVARh]
 
|R
 
|R
|measured lux is less than limit
+
|positive reactive energy
 
|-
 
|-
|1
+
 
 +
|i<address>.energy.reactiveneg
 +
|[KVARh]
 
|R
 
|R
|measured lux is greater than limit
+
|negative reactive energy
 
|-
 
|-
  
|rowspan="2"|i.<address>.wind.limit
+
|i<address>.pm
|0
+
|[W]
 
|R
 
|R
|measured wind is less than limit
+
|average positive active power
 
|-
 
|-
|1
+
 
 +
|i<address>.qm
 +
|[VAR]
 
|R
 
|R
|measured wind is greater than limit
+
|average positive reactive power
 
|-
 
|-
  
|rowspan="2"|i.<address>.light.south
+
|rowspan="2"|i<address>.reset.energy
|0
 
|R
 
|light is not coming from south
 
|-
 
 
|1
 
|1
|R
+
|RW
|light is coming from south
+
|reset energies
 
|-
 
|-
 
|rowspan="2"|i.<address>.light.west
 
 
|0
 
|0
|R
+
|RW
|light is not coming from west
+
| ---
 
|-
 
|-
 +
 +
|rowspan="2"|i<address>.reset.hours
 
|1
 
|1
|R
+
|RW
|light is coming from west
+
|reset hour-meter
 
|-
 
|-
 
|rowspan="2"|i.<address>.light.east
 
 
|0
 
|0
|R
+
|RW
|light is not coming from east
+
| ---
|-
 
|1
 
|R
 
|light is coming from east
 
 
|-
 
|-
  
|rowspan="2"|i.<address>.fault
+
|}
|0
+
 
|R
+
----
|sensor not fault
+
 
|-
+
=== MODPQ5 ===
|1
+
 
|R
+
Q5 tags proximity reader and programmer module.
|sensor fault
 
|-
 
|}
 
  
=== DFCC ===
+
Uses 1 input address on the Contatto bus. Write operations are performed through direct writes to the module’s RAM.
The DFCC is an energy meter and load manager module.
 
In the following table, <N> is the sequential index (1 to 3) of the DFCC module.
 
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 3,473: Line 3,525:
 
|-
 
|-
  
|energy.<n>.power.real
+
|i<address>.data
|0...65535
+
|style="white-space:nowrap"|0 <br/> <tag data>
 
|R
 
|R
|real power (Watt)
+
|30 characters hexadecimal representation of the 15 bytes of tag data; “0” if the module is not seeing any tag
 
|-
 
|-
  
|energy.<n>.power.reactive
+
|rowspan="2"|i<address>.data.write
| -32768...+32767
+
|0
 +
|R
 +
|the tag has been removed from the programmer after writing, or the module is not seeing any tag
 +
|-
 +
|1
 
|R
 
|R
|reactive power (var)
+
|the tag write operation was successful
 
|-
 
|-
  
|energy.<n>.power.apparent
+
|rowspan="2"|i<address>.reader.error
| -32768...+32767
+
|0
 
|R
 
|R
|apparent power (VA)
+
|reader/writer normal status
 
|-
 
|-
 
+
|1
|energy.<n>.power.realavg
 
|0...65535
 
 
|R
 
|R
|average real power (Watt)
+
|reader/writer module error (normally occurs when the reader is not connected to the MODPQ5 module)
 
|-
 
|-
  
|energy.<n>.power.reactiveavg
+
|rowspan="2"|i<address>.tag.error
| -32768...+32767
+
|0
 
|R
 
|R
|average reactive power (var)
+
|the tag is valid
 
|-
 
|-
 
+
|1
|energy.<n>.cos
 
| -1000...+1000
 
 
|R
 
|R
|cos(φ) * 1000
+
|the tag is not valid
 
|-
 
|-
  
|rowspan="2"|energy.<n>.load.1
+
|rowspan="2"|i<address>.request.error
 
|0
 
|0
 
|R
 
|R
|load 1 disabled
+
|no request or handshake errors detected
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|load 1 enabled
+
|handshake error
 
|-
 
|-
  
|rowspan="2"|energy.<n>.load.2
+
|rowspan="2"|i<address>.data.error
 
|0
 
|0
 
|R
 
|R
|load 2 disabled
+
|tag data ok
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|load 2 enabled
+
|tag data errors detected
 
|-
 
|-
  
|rowspan="2"|energy.<n>.load.3
+
|rowspan="2"|i<address>.unknown.error
 
|0
 
|0
 
|R
 
|R
|load 3 disabled
+
|no unknown errors
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|load 3 enabled
+
|unknown error detected
 
|-
 
|-
  
|rowspan="2"|energy.<n>.load.4
+
|rowspan="2"|i<address>.write
|0
+
|<tag data>
 
|R
 
|R
|load 4 disabled
+
|tag data write successful
 
|-
 
|-
|1
+
|error
 
|R
 
|R
|load 4 enabled
+
|tag data write error
 +
|-
 +
 
 +
|o<address>.write
 +
|<tag data>
 +
|W
 +
|30 characters hexadecimal representation of the 15 bytes data to be written on the tag
 +
|-
 +
|}
 +
 
 +
----
 +
 
 +
=== MODHT ===
 +
 
 +
MODHT is the hotel room controller module.
 +
 
 +
It uses 1 input and 1 output address.
 +
 
 +
Tags configuration data are written to the module’s EEPROM (persistent internal memory).
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 
|-
 
|-
  
|rowspan="2"|energy.<n>.load.5
+
|rowspan="2"|i<address>.door
|0
+
|0  
 
|R
 
|R
|load 5 disabled
+
|door closed
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|load 5 enabled
+
|door open
 
|-
 
|-
  
|rowspan="2"|energy.<n>.load.6
+
|rowspan="2"|i<address>.window
|0
+
|0  
 
|R
 
|R
|load 6 disabled
+
|window closed
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|load 6 enabled
+
|window open
 
|-
 
|-
  
|rowspan="2"|energy.<n>.load.7
+
|rowspan="2"|i<address>.panic
|0
+
|0  
 
|R
 
|R
|load 7 disabled
+
|panic request not active
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|load 7 enabled
+
|panic request
 
|-
 
|-
  
|rowspan="2"|energy.<n>.load.8
+
|rowspan="2"|i<address>.busy
|0
+
|0  
 
|R
 
|R
|load 8 disabled
+
|room is free
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|load 8 enabled
+
|room is occupied
 
|-
 
|-
  
|}
+
|rowspan="2"|i<address>.1
 
+
|0
=== DFANA ===
+
|R
Network analyzer module for Domino bus.
+
|input pin 1 off
Uses up to 20 consecutive input addresses and, if enabled, 1 output address equal to the base input address.
 
 
 
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
 
+
|1
|i.<address>.v12
 
|[V]
 
 
|R
 
|R
|chained voltage phase 1-2
+
|input pin 1 on
 
|-
 
|-
  
|i.<address>.v23
+
|rowspan="2"|i<address>.2
|[V]
+
|0
 
|R
 
|R
|chained voltage phase 2-3
+
|input pin 2 off
 
|-
 
|-
 
+
|1
|i.<address>.v31
 
|[V]
 
 
|R
 
|R
|chained voltage phase 3-1
+
|input pin 2 on
 
|-
 
|-
  
|i.<address>.vtm
+
|rowspan="2"|i<address>.ev
|[V]
+
|0
 
|R
 
|R
|average chained voltage
+
|EV output off
 
|-
 
|-
 
+
|1
|i.<address>.i1
 
|[A]
 
 
|R
 
|R
|current phase 1
+
|EV output on
 
|-
 
|-
  
|i.<address>.i2
+
|rowspan="2"|i<address>.aux
|[A]
+
|0
 
|R
 
|R
|current phase 2
+
|AUX output off
 
|-
 
|-
 
+
|1
|i.<address>.i3
 
|[A]
 
 
|R
 
|R
|current phase 3
+
|AUX output on
 
|-
 
|-
  
|i.<address>.itm
+
|rowspan="2"|i<address>.dnd
|[A]
+
|0
 
|R
 
|R
|average current
+
|do not disturb not active
 
|-
 
|-
 
+
|1
|i.<address>.ptot
 
|[W]
 
 
|R
 
|R
|total active power
+
|do not disturb
 
|-
 
|-
  
|i.<address>.ptotk
+
|rowspan="2"|i<address>.service
|[kW]
+
|0
 
|R
 
|R
|total active power
+
|room service request not active
 
|-
 
|-
 
+
|1
|i.<address>.qtot
 
|[W]
 
 
|R
 
|R
|total reactive power
+
|room service request
 
|-
 
|-
  
|i.<address>.qtotk
+
|rowspan="2"|i<address>.booked
|[kW]
+
|0
 
|R
 
|R
|total reactive power
+
|room is not booked
 
|-
 
|-
 
+
|1
|i.<address>.pf
 
|[pf]
 
 
|R
 
|R
|total power factor
+
|room is booked
 
|-
 
|-
  
|i.<address>.frequency
+
|rowspan="2"|i<address>.mode
|[Hz]
+
|summer
 
|R
 
|R
|frequency
+
|summer mode
 
|-
 
|-
 
+
|winter
|i.<address>.v1n
 
|[V]
 
 
|R
 
|R
|voltage phase 1
+
|winter mode
 
|-
 
|-
  
|i.<address>.v2n
+
|rowspan="5"|i<address>.fan
|[V]
+
|off
 
|R
 
|R
|voltage phase 2
+
|fan set to off
 
|-
 
|-
 
+
|auto
|i.<address>.v3n
 
|[V]
 
 
|R
 
|R
|voltage phase 3
+
|fan speed set to auto
 
|-
 
|-
 
+
|min
|i.<address>.p1
 
|[W]
 
 
|R
 
|R
|active power phase 1
+
|fan speed set to minimum
 
|-
 
|-
 
+
|med
|i.<address>.p1k
 
|[kW]
 
 
|R
 
|R
|active power phase 1
+
|fan speed set to medium
 +
|-
 +
|max
 +
|R
 +
|fan speed set to max
 
|-
 
|-
  
|i.<address>.p2
+
|rowspan="2"|i<address>.fan.status
|[W]
+
|0
 +
|R
 +
|fan is off
 +
|-
 +
|1
 
|R
 
|R
|active power phase 2
+
|fan is on (cooling or heating)
 
|-
 
|-
  
|i.<address>.p2k
+
|i<address>.temp
|[kW]
+
|<temp>
 
|R
 
|R
|active power phase 2
+
|ambient temperature value (in C/10)
 
|-
 
|-
  
|i.<address>.p3
+
|i<address>.setpoint.temp
|[W]
+
|<temp>
 
|R
 
|R
|active power phase 3
+
|setpoint value (in C/10)
 
|-
 
|-
  
|i.<address>.p3k
+
|i<address>.tag.door
|[kW]
+
|1...5
 
|R
 
|R
|active power phase 3
+
|type of tag that is opening the door (1 to 4 are service tags; 5 is a customer tag). After 5 seconds the value is reset to 0
 
|-
 
|-
  
 +
|rowspan="2"|i<address>.tag.room
 +
|0
 +
|R
 +
|no tag present in room’s reader
 +
|-
 +
|1...5
 +
|R
 +
|type of tag inserted in the room’s reader (1 to 4 are service tags; 5 is a customer tag)
 +
|-
  
|}
+
|i<address>.tag.<n>
 +
|<tag data>
 +
|R
 +
|24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5) stored in module’s EEPROM
 +
|-
  
== User Interface ==
+
|rowspan="2"|i<address>.pcam.error
 +
|0
 +
|R
 +
|PCAM module ok
 +
|-
 +
|1
 +
|R
 +
|PCAM module error
 +
|-
  
=== DFDMX ===
+
|rowspan="2"|i<address>.tpr.error
 +
|0
 +
|R
 +
|TPR/H module ok
 +
|-
 +
|1
 +
|R
 +
|TPR/H module error
 +
|-
  
You can define a standard HSYCO DMX server for each DFDMX module, then use the (dmx) and (dmxrgb) objects to control channels 1-64 of the DMX bus connected to the DFDMX module. For example:
+
|i<address>.mask
<pre>
+
|style="white-space:nowrap"|<mask data>
dmxServers = dmx
+
|R
dmxServersId.dmx = domino.o8
+
|24 characters hexadecimal representation of the 12 bytes tag mask stored in module’s EEPROM
</pre>
+
|-
 
 
Note that, instead of defining the dmxServersIP parameter, the dmxServersId is used to associate the DMX server with the id of the DFDMX module.
 
  
=== DFCC ===
+
|i<address>.data.door
 +
|0<br/><tag data>
 +
|R
 +
|30 characters hexadecimal representation of the 15 bytes of tag data being read from the door reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
 +
|-
  
==== UISET Actions ====
+
|i<address>.data.room
 +
|0<br/><tag data>
 +
|R
 +
|30 characters hexadecimal representation of the 15 bytes of tag data being read from the room reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
 +
|-
  
{| class="wikitable"
+
|i<address>.setpoint.summer.<n> <br/> i<address>.setpoint.winter.<n>
!ID
+
|<temp>
!Attribute
+
|R
!colspan="2"|Set to
+
|winter/summer setpoint <n> (1...3) current value (in C/10)
 
|-
 
|-
  
|energy.<n>.power
+
|i<address>.setpoint.delta.summer.low <br/> i<address>.setpoint.delta.summer.high <br/> i<address>.setpoint.delta.winter.low <br/>  i<address>.setpoint.delta.winter.high
|value
+
|style="white-space:nowrap"|<temp delta limit> <br/> 1...9
|real power, followed by “ W”
+
|R
 +
|the current temperature setpoint low/high limits for winter and summer modes (in C)
 
|-
 
|-
|}
 
  
=== DFCT ===
+
|rowspan="2"|o<address>.tag.<n>
 
+
|<tag data>
==== UISET Actions ====
+
|R
 
+
|tag data write successful
{| class="wikitable"
+
|-
!ID
+
|error
!Attribute
+
|R
!colspan="2"|Set to
+
|tag data write error
 
|-
 
|-
  
|rowspan="2"|<address>.mode
+
|rowspan="2"|o<address>.mask
|summer
+
|<mask data>
|summer mode (cooling)
+
|R
 +
|mask data write successful
 
|-
 
|-
|winter
+
|error
|winter mode (heating)
+
|R
 +
|mask data write error
 
|-
 
|-
  
|<address>.mode.label.summer
+
|rowspan="2"|o<address>.setpoint.summer.<n> <br/> o<address>.setpoint.winter.<n>
|visible
+
|<temp>
|the DFCT is in summer mode
+
|R
 +
|winter/summer setpoint N (1-3) write successful (in C/10)
 
|-
 
|-
 
+
|error
|<address>.mode.label.winter
+
|R
|visible
+
|setpoint write error
|the DFCT is in winter mode
 
 
|-
 
|-
  
|rowspan="2"|<address>.status
+
|rowspan="2"|o<address>.setpoint.delta.summer.low <br/> o<address>.setpoint.delta.summer.high <br/> o<address>.setpoint.delta.winter.low <br/>  o<address>.setpoint.delta.winter.high
|off
+
|<temp delta limit> <br/> 1...9
|zone off
+
|R
 +
|setpoint min/max limit for winter/summer write successful (in C)
 
|-
 
|-
|on
+
|error
|zone on
+
|R
 +
|setpoint limit write error
 
|-
 
|-
  
|<address>.status.label.cooling
+
|rowspan="2"|o<address>.ev.enable
|visible
+
|0
|if the zone is cooling
+
|W
 +
|EV output disabled
 
|-
 
|-
 
+
|1
|<address>.status.label.heating
+
|W
|visible
+
|EV output enabled
|if the zone is heating
 
 
|-
 
|-
  
|rowspan="4"|<address>.fan
+
|rowspan="2"|o<address>.aux.enable
|off
+
|0
|fan off
+
|W
 +
|AUX output disabled
 
|-
 
|-
|min
+
|1
|minimum fan speed
+
|W
|-
+
|AUX output enabled
|med
 
|medium fan speed
 
|-
 
|max
 
|maximum fan speed
 
 
|-
 
|-
  
|<address>.fan.label.min
+
|o<address>.panic.reset
|visible
+
|1
|the fan speed is min
+
|W
 +
|panic request reset
 
|-
 
|-
  
|<address>.fan.label.med
+
|rowspan="2"|o<address>.busy
|visible
+
|0
|the fan speed is med
+
|W
 +
|set room status to free
 
|-
 
|-
 
+
|1
|<address>.fan.label.max
+
|W
|visible
+
|set room status to occupied
|the fan speed is max
 
 
|-
 
|-
  
|rowspan="2"|<address>.fan.mode
+
|rowspan="2"|o<address>.ev
|man
+
|0
|manual fan mode
+
|W
 +
|EV output off
 
|-
 
|-
|auto
+
|1
|auto fan mode
+
|W
 +
|EV output on
 
|-
 
|-
  
|rowspan="3"|<address>.setpoint
+
|rowspan="2"|o<address>.aux
|1,2,3
+
|0
|active setpoint
+
|W
 +
|AUX output off
 
|-
 
|-
|man
+
|1
|manual setpoint
+
|W
 +
|AUX output on
 
|-
 
|-
|off
+
 
|zone off
+
|o<address>.dnd.reset
 +
|1
 +
|W
 +
|do not disturb reset
 
|-
 
|-
  
|<address>.setpoint.label.1
+
|o<address>.service.reset
|visible
+
|1
|setpoint 1 is active
+
|W
 +
|do not disturb reset
 
|-
 
|-
  
|<address>.setpoint.label.2
+
|rowspan="2"|o<address>.booked
|visible
+
|0
|setpoint 2 is active
+
|W
 +
|set room as not booked
 
|-
 
|-
 
+
|1
|<address>.setpoint.label.3
+
|W
|visible
+
|set room as booked
|setpoint 3 is active
 
 
|-
 
|-
  
|<address>.setpoint.label.man
+
|rowspan="2"|o<address>.mode
|visible
+
|summer
|manual setpoint is active
+
|W
 +
|set room to summer mode
 
|-
 
|-
 
+
|winter
|<address>.setpoint.label.off
+
|W
|visible
+
|set room to winter mode
|zone is off
 
 
|-
 
|-
  
|rowspan="2"|<address>.setpoint.mode
+
|rowspan="2"|o<address>.fan
|man
+
|off
|manual setpoint mode
+
|W
 +
|set fan off
 
|-
 
|-
 
|auto
 
|auto
|auto setpoint mode
+
|W
 +
|set fan to auto mode
 
|-
 
|-
  
|<address>.setpoint.temp
+
|rowspan="2"|o<address>.comfort
|<value>
+
|0
|the active setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
+
|W
 +
|force comfort set-point off
 
|-
 
|-
 
+
|1
|<address>.setpoint.temp.1
+
|W
|<value>
+
|force comfort set-point on
|the active setpoint 1 temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
 
 
|-
 
|-
  
|<address>.setpoint.temp.2
+
|rowspan="2"|o<address>.3
|<value>
+
|0
|the active setpoint 2 temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
+
|W
 +
|output pin 3 off
 
|-
 
|-
 
+
|1
|<address>.setpoint.temp.3
+
|W
|<value>
+
| output pin 3 on
|the active setpoint 3 temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
 
 
|-
 
|-
  
|<address>.setpoint.temp.man
 
|<value>
 
|the manual setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
 
|-
 
  
|rowspan="2"|<address>.temp
+
|rowspan="2"|o<address>.fan.heating.min
|<temp>
+
|0
|the manual setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
+
|W
 +
|reset heating speed limit
 
|-
 
|-
|fault
+
|1
|fault/error condition
+
|W
 +
|limit heating speed to min
 
|-
 
|-
|}
 
  
==== USER Commands ====
+
|rowspan="2"|o<address>.fan.cooling.min
 
+
|0
{| class="wikitable"
+
|W
!Name
+
|reset cooling speed limit
!Param
+
|-
!Action
+
|1
 +
|W
 +
|limit cooling speed to min
 
|-
 
|-
  
|rowspan="4"|<address>
+
|rowspan="2"|o<address>.tag.<n>
|mode
+
|read
|cycle through summer and winter mode
+
|W
 +
|read the 12 bytes stored in module’s EEPROM for service N tags (<n> from 1 to 5)
 
|-
 
|-
|mode.summer
+
|<tag data>
|set summer mode (cooling)
+
|W
 +
|24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5), to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
 
|-
 
|-
|mode.winter
+
 
|set winter mode (heating)
+
|rowspan="2"|o<address>.mask
 +
|read
 +
|W
 +
|read the 12 bytes mask stored in module’s EEPROM
 
|-
 
|-
|fan
+
|<mask data>
|cycle through fan speeds and modes (auto, off, man/min, man/med, man/max, auto)
+
|W
 +
|24 characters hexadecimal representation of the 12 bytes tag mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
 
|-
 
|-
  
|rowspan="16"|<address>.setpoint
+
|rowspan="2"|o<address>.setpoint.summer.<n> <br/> o<address>.setpoint.winter.<n>
|mode
+
|read
|cycle through the manual, automatic and off operation modes
+
|W
 +
|read winter/summer setpoint <n> (1-3)
 
|-
 
|-
|mode.man
+
|<temp>
|set manual operation mode
+
|W
 +
|set winter/summer setpoint <n> (1-3)
 
|-
 
|-
|mode.auto
+
 
|set automatic operation mode
+
|o<address>.setpoint.delta
 +
|read
 +
|W
 +
|read winter and summer, low and high setpoint limits
 
|-
 
|-
|mode.off
+
 
|off mode
+
|o<address>.setpoint.delta.summer.low <br/> o<address>.setpoint.delta.summer.high <br/> o<address>.setpoint.delta.winter.low <br/> o<address>.setpoint.delta.winter.high
 +
|<temp delta limit>
 +
|W
 +
|set winter/summer, low/high setpoint limit (in C)
 
|-
 
|-
|temp.1.up
+
 
|increase setpoint 1 temperature in 0.5C steps
+
|}
 +
 
 +
----
 +
 
 +
=== MODCA ===
 +
 
 +
MODCA is the access control module.  
 +
 
 +
It uses 1 input and 1 output address.  
 +
 
 +
Tags configuration data are written to the module’s EEPROM (persistent external memory).
 +
 
 +
Site codes and the tags mask are written to the internal EEPROM.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 
|-
 
|-
|temp.1.down
+
 
|decrease setpoint 1 temperature in 0.5C steps
+
|rowspan="2"|i<address>.1
 +
|0
 +
|R
 +
|input pin 1 off
 
|-
 
|-
|temp.1.<t>
+
|1
|setpoint 1 set to temperature t, in C/10 (0 <= t <= 355)
+
|R
 +
|input pin 1 on
 
|-
 
|-
|temp.2.up
+
 
|increase setpoint 2 temperature in 0.5C steps
+
|rowspan="2"|i<address>.2
 +
|0
 +
|R
 +
|input pin 2 off
 
|-
 
|-
|temp.2.down
+
|1
|decrease setpoint 2 temperature in 0.5C steps
+
|R
 +
|input pin 2 on
 
|-
 
|-
|temp.2.<t>
+
 
|setpoint 2 set to temperature t, in C/10 (0 <= t <= 355)
+
|rowspan="2"|i<address>.blocked
 +
|0  
 +
|R
 +
|access control enabled
 
|-
 
|-
|temp.3.up
+
|1
|increase setpoint 3 temperature in 0.5C steps
+
|R
 +
|access blocked
 
|-
 
|-
|temp.3.down
+
 
|decrease setpoint 3 temperature in 0.5C steps
+
|rowspan="2"|i<address>.tpr.error
 +
|0  
 +
|R
 +
|TPR module ok
 
|-
 
|-
|temp.3.<t>
+
|1
|setpoint 3 set to temperature t, in C/10 (0 <= t <= 355)
+
|R
 +
|TPR module error
 
|-
 
|-
|temp.man.up
+
 
|increase manual setpoint temperature in 0.5C steps
+
|rowspan="2"|i<address>.access.granted.1
 +
|0  
 +
|R
 +
|no tag present at antenna 1
 
|-
 
|-
|temp.man.down
+
|1
|decrease manual setpoint temperature in 0.5C steps
+
|R
 +
|access granted to tag at antenna 1
 
|-
 
|-
|temp.man.<t>
+
 
|manual setpoint set to temperature t, in C/10 (0 <= t <= 355)
+
|rowspan="2"|i<address>.access.granted.2
 +
|0
 +
|R
 +
|no tag present at antenna 2
 +
|-
 +
|1
 +
|R
 +
|access granted to tag at antenna 2
 
|-
 
|-
  
|rowspan="9"|<address>.fan
+
|rowspan="8"|i<address>.access.denied
|mode
+
|0
|cycle through the manual and automatic fan speed modes
+
|R
 +
|access denied flags reset
 
|-
 
|-
|mode.man
+
|site
|set manual fan speed mode
+
|R
 +
|access denied due to site code error
 
|-
 
|-
|mode.auto
+
|code
|set automatic fan speed mode
+
|R
 +
|access denied due to user code error
 
|-
 
|-
|up
+
|total.limit
|increase fan speed
+
|R
 +
|access denied due to exceeded total number of access grants
 
|-
 
|-
|down
+
|daily.limit
|decrease fan speed
+
|R
 +
|access denied due to exceeded daily number of access grants
 
|-
 
|-
|min
+
|time
|set min fan speed
+
|R
 +
|access denied due to time range violation
 
|-
 
|-
|med
+
|day
|set med fan speed
+
|R
 +
|access denied due to weekday violation
 
|-
 
|-
|max
+
|expired
|set max fan speed
+
|R
 +
|access denied due expired tag
 
|-
 
|-
|off
+
 
|fan off
+
|i<address>.denied.code
 +
|<tag code>
 +
|R
 +
|the tag code (decimal value of selected two bytes of the tag data) that was denied access
 
|-
 
|-
|}
 
  
=== DFTZ ===
+
|i<address>.granted.1.code
 +
|<tag code>
 +
|R
 +
|the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 1
 +
|-
  
==== UISET Actions ====
+
|i<address>.granted.2.code
 +
|<tag code>
 +
|R
 +
|the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 2
 +
|-
  
{| class="wikitable"
+
|i<address>.site.<n>
!ID
+
|style="white-space:nowrap"|<site data>
!Attribute
+
|R
!colspan="2"|Set to
+
|16 characters hexadecimal representation of the 8 bytes data representing the Nth site code (N from 1 to 4) stored in module’s EEPROM
 
|-
 
|-
  
|rowspan="2"|<address>.mode
+
|i<address>.mask
|summer
+
|style="white-space:nowrap"|<mask data>
|summer mode (cooling)
+
|R
 +
|16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
 
|-
 
|-
|winter
+
 
|winter mode (heating)
+
|i<address>.mask
 +
|<mask data>
 +
|R
 +
|16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
 
|-
 
|-
  
|<address>.mode.label.summer
+
|i<address>.user.<n>
|visible
+
|<user data>
|the DFTZ is in summer mode
+
|R
 +
|32 characters hexadecimal representation of the 16 bytes data for user <n> (N from 1 to 2000) stored in module’s EEPROM
 
|-
 
|-
  
|<address>.mode.label.winter
+
|rowspan="2"|o<address>.site.<n>
|visible
+
|<site data>
|the DFTZ is in winter mode
+
|R
 +
|site data write successful
 +
|-
 +
|error
 +
|R
 +
|site data write error
 
|-
 
|-
  
|rowspan="2"|<address>.status
+
|rowspan="2"|o<address>.mask
|off
+
|<mask data>
|zone off
+
|R
 +
|mask data write successful
 
|-
 
|-
|on
+
|error
|zone on
+
|R
 +
|mask data write error
 
|-
 
|-
  
|<address>.status.label.off
+
|rowspan="2"|o<address>.user.<n>
|visible
+
|<user data>
|if the zone is not cooling or heating
+
|R
 +
|user data write successful
 +
|-
 +
|error
 +
|R
 +
|user data write error
 
|-
 
|-
  
|<address>.status.label.cooling
+
|rowspan="2"|o<address>.relay
|visible
+
|0
|if the zone is cooling
+
|W
 +
|relay output off
 
|-
 
|-
 
+
|1
|<address>.status.label.heating
+
|W
|visible
+
|relay output pulse on, with pulse length according to the MODCA configuration (with firmware versions before 1.3 this data point remains at 1 and should be reset to 0 with an explicit command; with firmware 1.3 the data point value follows the relay state, and is automatically reset to 0 at the end of the pulse period)
|if the zone is heating
 
 
|-
 
|-
  
|rowspan="3"|<address>.setpoint
+
|rowspan="2"|o<address>.relay.forced
|com
+
|0
|comfort setpoint
+
|W
 +
|forced relay mode not set (default behaviour)
 
|-
 
|-
|man
+
|1
|manual setpoint
+
|W
 +
|forced relay mode set: the relay remains closed until the relay.forced command is reset (available with MODCA firmware version 2.0 or later)
 
|-
 
|-
|off
+
 
|zone off
+
|rowspan="2"|o<address>.block
 +
|0
 +
|W
 +
|enable access control
 
|-
 
|-
 
+
|1
|<address>.setpoint.label.1
+
|W
|visible
+
|block access control
|comfort setpoint is active
 
 
|-
 
|-
  
|<address>.setpoint.label.2
+
|rowspan="2"|o<address>.access.granted.code
|visible
+
|0
|eco setpoint is active
+
|W
 +
|reset
 
|-
 
|-
 
+
|1
|<address>.setpoint.label.off
+
|W
|visible
+
|allow access even when site code is not valid
|zone is off
 
 
|-
 
|-
  
|<address>.setpoint.temp
+
|rowspan="2"|o<address>.access.granted.total.limit
|<value>
+
|0
|the active setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
+
|W
 +
|reset
 
|-
 
|-
 
+
|1
|<address>.setpoint.temp.1
+
|W
|<value>
+
|allow access even when the total limit of access grants has been exceeded
|the comfort setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
 
 
|-
 
|-
  
|<address>.setpoint.temp.2
+
|rowspan="2"|o<address>.access.granted.daily.limit
|<value>
+
|0
|the eco setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
+
|W
 +
|reset
 
|-
 
|-
 
+
|1
|<address>.setpoint.temp.man
+
|W
|<value>
+
|allow access even when the daily limit of access grants has been exceeded
|the summer or winter setpoint temperature limit, in Celsius degrees with one decimal digit, followed by " &deg;C"
 
 
|-
 
|-
  
|rowspan="2"|<address>.temp
+
|rowspan="2"|o<address>.access.granted.time
|<temp>
+
|0
|the manual setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
+
|W
 +
|reset
 
|-
 
|-
|fault
+
|1
|fault/error condition
+
|W
 +
|allow access even outside of the allowed timeframe
 
|-
 
|-
|}
 
  
==== USER Commands ====
+
|rowspan="2"|o<address>.access.granted.day
 
+
|0
{| class="wikitable"
+
|W
!Name
+
|reset
!Param
+
|-
!Action
+
|1
 +
|W
 +
|allow access even outside of the allowed weekdays
 
|-
 
|-
  
|rowspan="3"|<address>
+
|rowspan="2"|o<address>.access.granted.expired
|mode
+
|0
|cycle through summer and winter mode
+
|W
 +
|reset
 
|-
 
|-
|mode.summer
+
|1
|set summer mode (cooling)
+
|W
|-
+
|allow access even when the tag is expired
|mode.winter
 
|set winter mode (heating)
 
 
|-
 
|-
  
|rowspan="16"|<address>.setpoint
+
|rowspan="2"|o<address>.site.<n>
|mode
+
|read
|cycle through the manual, automatic and off operation modes
+
|W
 +
|read the 8 bytes stored in module’s EEPROM for site N code (<n> from 1 to 4)
 
|-
 
|-
|mode.comfort
+
|<site data>
|set comfort operation mode
+
|W
 +
|16 characters hexadecimal representation of the 8 bytes data of site N code (N from 1 to 4), to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
 
|-
 
|-
|mode.eco
+
 
|set eco operation mode
+
|rowspan="2"|o<address>.mask
 +
|read
 +
|W
 +
|read the 8 bytes mask stored in module’s EEPROM
 
|-
 
|-
|mode.off
+
|<mask data>
|off mode
+
|W
 +
|16 characters hexadecimal representation of the 8 bytes site code mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
 
|-
 
|-
|temp.up
+
 
|increase the active setpoint temperature in 0.5C steps
+
|rowspan="3"|o<address>.user.<n>
 +
|read
 +
|W
 +
|read the 16 bytes stored in module’s EEPROM for user N (<n> from 1 to 2000)
 
|-
 
|-
|temp.down
+
|<user data>
|ddecrease the active setpoint temperature in 0.5C steps
+
|W
 +
|16 characters hexadecimal representation of the first 8 bytes of access control data for user N (N from 1 to 2000) , to be stored in module’s EEPROM
 
|-
 
|-
|temp.<t>
+
|<reset>
|active setpoint set to temperature t, in C/10 (0 <= t <= 355)
+
|W
 +
|reset to 0 the total and daily counters for user <n>
 
|-
 
|-
|temp.1.up
+
 
|increase comfort setpoint temperature in 0.5C steps
+
|o<address>.users
 +
|erase
 +
|W
 +
|deletes all users data. This action requires up to about 27 seconds to be completed. It also deletes all i<address>.user.<n> and o<address>.user.<n> data points
 
|-
 
|-
|temp.1.down
+
|}
|decrease comfort setpoint temperature in 0.5C steps
+
 
 +
----
 +
 
 +
=== MODKB ===
 +
 
 +
MODKB is the keypad access control module.  
 +
 
 +
It uses 1 input and 1 output address.  
 +
 
 +
PIN configuration data are written to the module’s EEPROM (persistent memory).
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 
|-
 
|-
|temp.1.<t>
+
 
|comfort setpoint set to temperature t, in C/10 (0 <= t <= 355)
+
|rowspan="2"|i<address>.1
 +
|0  
 +
|R
 +
|input pin 1 off
 
|-
 
|-
|temp.2.up
+
|1
|increase eco setpoint temperature in 0.5C steps
+
|R
 +
|input pin 1 on
 
|-
 
|-
|temp.2.down
+
 
|decrease eco setpoint temperature in 0.5C steps
+
|rowspan="2"|i<address>.2
 +
|0  
 +
|R
 +
|input pin 2 off
 
|-
 
|-
|temp.2.<t>
+
|1
|eco setpoint set to temperature t, in C/10 (0 <= t <= 355)
+
|R
 +
|input pin 2 on
 
|-
 
|-
  
|temp.man.up
+
|rowspan="2" style="white-space:nowrap"|i<address>.access.granted.<n>
|increase setpoint temperature limit in 0.5C steps
+
|0  
 +
|R
 +
|reset
 
|-
 
|-
|temp.man.down
+
|1
|decrease setpoint temperature limit in 0.5C steps
+
|R
 +
|access granted to PIN <n> (<n> from 1 to 30)
 
|-
 
|-
|temp.man.<t>
+
 
|set-point temperature limit set to temperature t, in C/10 (0 <= t <= 355)
+
|i<address>.pin
 +
|style="white-space:nowrap"|<pin code>
 +
|R
 +
|the last pin code entered on the keypad (from 1 to 65535). Reset to 0 after programmed code persistence time
 +
|-
 +
 
 +
|rowspan="5"|i<address>.access.granted.<n>
 +
|0
 +
|R
 +
|access denied flags reset
 +
|-
 +
|site
 +
|R
 +
|access denied due to site code error
 +
|-
 +
|code
 +
|R
 +
|access denied due to user code error
 +
|-
 +
|time
 +
|R
 +
|access denied due to time range violation
 +
|-
 +
|day
 +
|R
 +
|access denied due to weekday violation
 +
|-
 +
 
 +
|i<address>.pin.<n>
 +
|style="white-space:nowrap"|<pin data>
 +
|R
 +
|16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30) stored in module’s EEPROM
 +
|-
 +
 
 +
|rowspan="2"|o<address>.pin.<n>
 +
|<pin data>
 +
|R
 +
|pin data write successful
 +
|-
 +
|error
 +
|R
 +
|pin data write error
 +
|-
 +
 
 +
|rowspan="2"|o<address>.relay
 +
|0
 +
|W
 +
|relay output off
 +
|-
 +
|1
 +
|W
 +
|relay output on (pulse output, resets to 0 immediately after the relay is closed, usually before the relay closure time)
 +
|-
 +
 
 +
|rowspan="2"|o<address>.lock.all
 +
|0
 +
|W
 +
|reset
 +
|-
 +
|1
 +
|W
 +
|disables access to all PINs
 +
|-
 +
 
 +
|rowspan="2"|o<address>.lock.<n>
 +
|0
 +
|W
 +
|reset
 +
|-
 +
|1
 +
|W
 +
|disables access to PIN <n> (<n> from 1 to 30)
 +
|-
 +
 
 +
|rowspan="2"|o<address>.pin.<n>
 +
|read
 +
|W
 +
|read the 8 bytes stored in module’s EEPROM for PIN <n> (<n> from 1 to 30)
 +
|-
 +
|<pin data>
 +
|W
 +
|16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30), to be stored in module’s EEPROM
 
|-
 
|-
  
 
|}
 
|}
 +
 +
----
 +
 +
=== MODDI ===
 +
 +
500W IGBT dimmer module.
 +
 +
It uses 1 output address.
 +
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 +
|-
 +
 +
|rowspan="3"|o<address>
 +
|0...100
 +
|RW
 +
|brightness level according to current ramp
 +
|-
 +
|off
 +
|RW
 +
|dimmer off
 +
|-
 +
|101...173
 +
|W
 +
|command (see MODDI commands table)
 +
|-
 +
 +
|rowspan="2"|o<address>.noline
 +
|0
 +
|R
 +
|AC line detected
 +
|-
 +
|1
 +
|R
 +
|AC line fault
 +
|-
 +
 +
|rowspan="2"|o<address>.overcurrent
 +
|0
 +
|R
 +
|normal
 +
|-
 +
|1
 +
|R
 +
|overcurrent protection
 +
|-
 +
 +
|rowspan="2"|o<address>.overvoltage
 +
|0
 +
|R
 +
|normal
 +
|-
 +
|1
 +
|R
 +
|overvoltage protection
 +
|-
 +
 +
|rowspan="2"|o<address>.overtemperature
 +
|0
 +
|R
 +
|normal
 +
|-
 +
|1
 +
|R
 +
|overtemperature protection
 +
|-
 +
 +
|}
 +
 +
The dimmer level can be set using additional formats besides the standard percent values:
 +
*absolute positive integer number between 0 and 100
 +
*percent number, formatted as x%
 +
*fractional format, formatted as “n/m”, where 0 <= n <= m.
 +
 +
----
 +
 +
=== MODCL ===
 +
 +
Temperature control module.
 +
 +
It uses 1 input and one output address.
 +
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 +
|-
 +
 +
|rowspan="2"|i<address>
 +
|on
 +
|R
 +
|zone on
 +
|-
 +
|off
 +
|R
 +
|zone off
 +
|-
 +
 +
|rowspan="2"|i<address>.mode
 +
|winter
 +
|R
 +
|winter mode
 +
|-
 +
|summer
 +
|R
 +
|summer mode
 +
|-
 +
 +
|rowspan="4"|i<address>.fan
 +
|min
 +
|R
 +
|min fan speed
 +
|-
 +
|med
 +
|R
 +
|medium fan speed
 +
|-
 +
|max
 +
|R
 +
|max fan speed
 +
|-
 +
|off
 +
|R
 +
|fan off
 +
|-
 +
 +
|rowspan="2"|i<address>.fan.mode
 +
|man
 +
|R
 +
|manual fan mode
 +
|-
 +
|auto
 +
|R
 +
|auto fan mode
 +
|-
 +
 +
|rowspan="5"|i<address>.setpoint
 +
|1
 +
|R
 +
|setpoint 1
 +
|-
 +
|2
 +
|R
 +
|setpoint 2
 +
|-
 +
|3
 +
|R
 +
|setpoint 3
 +
|-
 +
|off
 +
|R
 +
|off
 +
|-
 +
|man
 +
|R
 +
|manual setpoint
 +
|-
 +
 +
|rowspan="2"|i<address>.setpoint.mode
 +
|man
 +
|R
 +
|manual setpoint mode
 +
|-
 +
|auto
 +
|R
 +
|auto setpoint mode
 +
|-
 +
 +
|rowspan="2"|i<address>.temp
 +
|<temp>
 +
|R
 +
|temperature value (in C/10)
 +
|-
 +
|fault
 +
|R
 +
|temperature sensor fault
 +
|-
 +
 +
|rowspan="3"|i<address>.status
 +
|off
 +
|R
 +
|off
 +
|-
 +
|cooling
 +
|R
 +
|cooling status mode
 +
|-
 +
|heating
 +
|R
 +
|heating status mode
 +
|-
 +
 +
|rowspan="2"|o<address>
 +
|on
 +
|RW
 +
|zone on (writing on to this datapoint doesn't turn the zone on, it simply resets the off command)
 +
|-
 +
|off
 +
|RW
 +
|zone off
 +
|-
 +
 +
|rowspan="2"|o<address>.mode
 +
|winter
 +
|RW
 +
|winter mode
 +
|-
 +
|summer
 +
|RW
 +
|summer mode
 +
|-
 +
 +
|rowspan="3"|o<address>.setpoint.mode
 +
|man
 +
|RW
 +
|manual mode
 +
|-
 +
|auto
 +
|RW
 +
|auto mode
 +
|-
 +
|off
 +
|RW
 +
|zone off
 +
|-
 +
 +
|rowspan="5"|o<address>.setpoint
 +
|1
 +
|RW
 +
|setpoint 1
 +
|-
 +
|2
 +
|RW
 +
|setpoint 2
 +
|-
 +
|3
 +
|RW
 +
|setpoint 3
 +
|-
 +
|0
 +
|RW
 +
|setpoint off
 +
|-
 +
|man
 +
|RW
 +
|manual setpoint
 +
|-
 +
 +
|o<address>.setpoint.temp.1
 +
|<temp>
 +
|RW
 +
|temperature setpoint 1 value (in C/10)
 +
|-
 +
 +
|o<address>.setpoint.temp.2
 +
|<temp>
 +
|RW
 +
|temperature setpoint 2 value (in C/10)
 +
|-
 +
 +
|o<address>.setpoint.temp.3
 +
|<temp>
 +
|RW
 +
|temperature setpoint 3 value (in C/10)
 +
|-
 +
 +
|o<address>.setpoint.temp.man
 +
|<temp>
 +
|RW
 +
|temperature manual setpoint value (in C/10)
 +
|-
 +
|}
 +
 +
----
 +
 +
== User Interface ==
 +
 +
All CONTATTO devices data points that have been defined in the systemtopo.txt database are automatically listed in the Project Editor. Adding a button to control a device output point requires just a few clicks and no additional EVENTS logic.
 +
 +
 +
[[File:IO_Servers_Contatto_Project_Editor.png|center|border|600px]]
 +
 +
 +
Besides the direct association of control buttons and data points, the CONTATTO driver also automatically updates graphical objects that represent values or states of complex devices, like the CLIMA2 temperature control unit. It will also automatically intercept buttons to manually set operation modes and temperature set-points.
 +
 +
----
 +
 +
=== CLIMA2 ===
 +
 +
You can use the [[temp]] and [[tempmini]] objects to control CLIMA2 devices.
 +
 +
 +
[[File:UI Object clima2.png|border]]
 +
 +
 +
The fan button, in the bottom right-hand corner, is not enabled because the manual control of the fan speed is not available. The M button, in the top right-hand corner, allows to switch the module on or off.
 +
 +
You can also easily create customized controls for the CLIMA2, using standard graphic objects that are automatically set to show the device’s status and intercepted to send user commands.
 +
 +
==== UISET Actions ====
 +
{| class="wikitable"
 +
!ID
 +
!Attribute
 +
!Set to
 +
!Description
 +
|-
 +
 +
|rowspan="2"|<address>.mode
 +
|value
 +
|SUMMER
 +
|summer mode (cooling)
 +
|-
 +
|value
 +
|WINTER
 +
|winter mode (heating)
 +
|-
 +
 +
|<address>.mode.label.summer
 +
|visible
 +
|true
 +
|if CLIMA2 is in summer mode
 +
|-
 +
 +
|<address>.mode.label.winter
 +
|visible
 +
|true
 +
|if CLIMA2 is in winter mode
 +
|-
 +
 +
|rowspan="2"|<address>.status
 +
|value
 +
|OFF
 +
|zone off
 +
|-
 +
|value
 +
|ON
 +
|zone on
 +
|-
 +
 +
|<address>.status.label.off
 +
|visible
 +
|true
 +
|if the zone is not cooling or heating
 +
|-
 +
 +
|<address>.status.label.cooling
 +
|visible
 +
|true
 +
|if the zone is cooling
 +
|-
 +
 +
|<address>.status.label.heating
 +
|visible
 +
|true
 +
|if the zone is heating
 +
|-
 +
 +
|rowspan="4"|<address>.fan
 +
|value
 +
|OFF
 +
|fan off
 +
|-
 +
| value
 +
|MIN
 +
|minimum fan speed
 +
|-
 +
| value
 +
|MED
 +
|medium fan speed
 +
|-
 +
| value
 +
|MAX
 +
|maximum fan speed
 +
|-
 +
 +
|<address>.fan.label.min
 +
|visible
 +
|true
 +
|minimum fan speed
 +
|-
 +
 +
|<address>.fan.label.med
 +
|visible
 +
|true
 +
|medium fan speed
 +
|-
 +
 +
|<address>.fan.label.max
 +
|visible
 +
|true
 +
|maximum fan speed
 +
|-
 +
 +
|<address>.setpoint.label.on
 +
|visible
 +
|true
 +
|zone is on
 +
|-
 +
 +
|<address>.setpoint.label.off
 +
|visible
 +
|true
 +
|zone is off
 +
|-
 +
 +
|rowspan="2"|<address>.setpoint.mode
 +
|value
 +
|ON
 +
|zone is on
 +
|-
 +
|value
 +
|OFF
 +
|zone is off
 +
|-
 +
 +
|<address>.setpoint.temp
 +
|value
 +
|<value>
 +
|the active setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
 +
|-
 +
 +
|rowspan="2"|<address>.temp
 +
|rowspan="2"|value
 +
|<temp>
 +
|the measured temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
 +
|-
 +
|FAULT
 +
|fault/error condition
 +
|-
 +
 +
|}
 +
 +
==== USER Commands ====
 +
 +
{| class="wikitable"
 +
!Name
 +
!Param
 +
!Action
 +
|-
 +
 +
|rowspan="4"|<address>
 +
|on
 +
|module on
 +
|-
 +
|off
 +
|module off
 +
|-
 +
|mode.summer
 +
|set summer mode (cooling)
 +
|-
 +
|mode.winter
 +
|set winter mode (heating)
 +
|-
 +
 +
|rowspan="6"|<address>.setpoint
 +
|temp.up
 +
|increase setpoint temperature in 0.5C steps
 +
|-
 +
|temp.down
 +
|decrease setpoint temperature in 0.5C steps
 +
|-
 +
|0...400
 +
|set the setpoint to the defined value (in C/10)
 +
|-
 +
|mode
 +
|cycle through on and off modes
 +
|-
 +
|mode.on
 +
|module on
 +
|-
 +
|mode.off
 +
|module off
 +
|-
 +
 +
|}
 +
 +
 +
----
 +
 +
=== MODCL ===
 +
 +
You can use the [[temp]] and [[tempmini]] objects to control MODCL devices.
 +
 +
 +
The fan button, in the bottom right-hand corner, is not enabled because the manual control of the fan speed is not available. The M button, in the top right-hand corner, allows to switch the module to auto or manual mode, or off.
 +
 +
You can also easily create customized controls for the MODCL, using standard graphic objects that are automatically set to show the device’s status and intercepted to send user commands.
 +
 +
==== UISET Actions ====
 +
{| class="wikitable"
 +
!ID
 +
!Attribute
 +
!Set to
 +
!Description
 +
|-
 +
 +
|rowspan="2"|<address>.mode
 +
|rowspan="2"|value
 +
|SUMMER
 +
|summer mode (cooling)
 +
|-
 +
|WINTER
 +
|winter mode (heating)
 +
|-
 +
 +
|<address>.mode.label.summer
 +
|visible
 +
|true
 +
|if MODCL is in summer mode
 +
|-
 +
 +
|<address>.mode.label.winter
 +
|visible
 +
|true
 +
|if MODCL is in winter mode
 +
|-
 +
 +
|rowspan="2"|<address>.status
 +
|rowspan="2"|value
 +
|OFF
 +
|zone off
 +
|-
 +
|ON
 +
|zone on
 +
|-
 +
 +
|<address>.status.label.off
 +
|visible
 +
|true
 +
|if the zone is not cooling or heating
 +
|-
 +
 +
|<address>.status.label.cooling
 +
|visible
 +
|true
 +
|if the zone is cooling
 +
|-
 +
 +
|<address>.status.label.heating
 +
|visible
 +
|true
 +
|if the zone is heating
 +
|-
 +
 +
|rowspan="4"|<address>.fan
 +
|rowspan="4"|value
 +
|OFF
 +
|fan off
 +
|-
 +
|MIN
 +
|minimum fan speed
 +
|-
 +
|MED
 +
|medium fan speed
 +
|-
 +
|MAX
 +
|maximum fan speed
 +
|-
 +
 +
|<address>.fan.label.min
 +
|visible
 +
|true
 +
|minimum fan speed
 +
|-
 +
 +
|<address>.fan.label.med
 +
|visible
 +
|true
 +
|medium fan speed
 +
|-
 +
 +
|<address>.fan.label.max
 +
|visible
 +
|true
 +
|maximum fan speed
 +
|-
 +
 +
|rowspan="3"|<address>.setpoint
 +
|rowspan="3"|value
 +
|1, 2, 3
 +
|setpoint N is active
 +
|-
 +
|MAN
 +
|manual setpoint is active
 +
|-
 +
|OFF
 +
|zone is off
 +
|-
 +
 +
|<address>.setpoint.label.1
 +
|visible
 +
|true
 +
|setpoint 1 is active
 +
|-
 +
 +
|<address>.setpoint.label.2
 +
|visible
 +
|true
 +
|setpoint 3 is active
 +
|-
 +
 +
|<address>.setpoint.label.3
 +
|visible
 +
|true
 +
|setpoint 3 is active
 +
|-
 +
 +
|<address>.setpoint.label.man
 +
|visible
 +
|true
 +
|manual setpoint is active
 +
|-
 +
 +
|<address>.setpoint.label.off
 +
|visible
 +
|true
 +
|zone is off
 +
|-
 +
 +
|rowspan="3"|<address>.setpoint.mode
 +
|rowspan="3"|value
 +
|AUTO
 +
|automatic mode
 +
|-
 +
|MAN
 +
|manual mode
 +
|-
 +
|OFF
 +
|zone is off
 +
|-
 +
 +
|<address>.setpoint.temp
 +
|value
 +
|<value>
 +
|the active setpoint temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
 +
|-
 +
 +
|rowspan="2"|<address>.temp
 +
|rowspan="2"|value
 +
|<temp>
 +
|the measured temperature, in Celsius degrees with one decimal digit, followed by " &deg;C"
 +
|-
 +
|FAULT
 +
|fault/error condition
 +
|-
 +
 +
|}
 +
 +
==== USER Commands ====
 +
 +
{| class="wikitable"
 +
!Name
 +
!Param
 +
!Action
 +
|-
 +
 +
|<address>
 +
|mode
 +
|cycle summer/winter modes
 +
|-
 +
|rowspan="2"|<address>.mode
 +
|mode.summer
 +
|set summer mode (cooling)
 +
|-
 +
|mode.winter
 +
|set winter mode (heating)
 +
|-
 +
|rowspan="2"|<address>.setpoint.temp
 +
|up
 +
|increase current setpoint temperature in 0.5C steps
 +
|-
 +
|down
 +
|decrease current setpoint temperature in 0.5C steps
 +
|-
 +
|rowspan="3"|<address>.setpoint.temp.N
 +
|up
 +
|increase setpoint N temperature in 0.5C steps
 +
|-
 +
|down
 +
|decrease setpoint N temperature in 0.5C steps
 +
|-
 +
|0...400
 +
|set setpoint N to the given value (in C/10)
 +
|-
 +
|rowspan="3"|<address>.setpoint.temp.man
 +
|up
 +
|increase manual setpoint temperature in 0.5C steps
 +
|-
 +
|down
 +
|decrease manual setpoint temperature in 0.5C steps
 +
|-
 +
|0...400
 +
|set manual setpoint to the given value (in C/10)
 +
|-
 +
|<address>.setpoint
 +
|mode
 +
|cycle through auto, manual and off modes
 +
|-
 +
|rowspan="6"|<address>.setpoint.mode
 +
|auto
 +
|set auto mode
 +
|-
 +
|man
 +
|set manual mode
 +
|-
 +
|off
 +
|zone off
 +
|-
 +
 +
|}
 +
 +
== Release Notes ==
 +
 +
=== 3.5.1 ===
 +
*MODANA updated to support negative active energy values  (fw. 1.5 or later)
 +
 +
=== 3.5.0 ===
 +
*added support for MCP4
 +
*added support for MODCA firmware version 2.0, with new "relay.forced" datapoint
 +
*added support for MOD32IN
 +
*MODPQ5 is now identified with its unique ID. Use MCPIDE 3.2.3 or later to program the MCPXT/MCP4 to allow HSYCO to correctly identify this module
 +
 +
=== 3.4.0 ===
 +
*improved communication error logging
 +
*improved support of tools remote access
 +
*events generated during startup if startupevents=true are now executed sequentially
 +
*support for MODDI
 +
*support for MODCL
 +
 +
=== 3.2.2 ===
 +
bug fixes:
 +
*the toolspassword optional parameter was incorrectly converted to lower case
 +
*fixed a bug that prevented reading the last 3 addresses of MOAN/I4 and MI420-X4 modules
 +
=== 3.2.1 ===
 +
*added support for MODHT set-point delta limits read and write
 +
*the lux datapoint name was incorrectly set to ID.i<addr>.1 instead of ID.i<addr>.lux
 +
=== 3.2.0 ===
 +
*support for MODCA, MODHT, MODKB, MODPQ5
 +
*new "detectevents" option, generates forced events when a device is detected at start-up
 +
*support for the toolspassword option, to allow MCP-IDE and other tools secure remote access to the MCP via HSYCO
 +
*new clock datapoint to read the MXP-XT internal clock and set it to HSYCO's time
 +
=== 3.0.3 ===
 +
*optimized performance of MCP’s registers status polling
 +
*the server failed to initialized when an unsupported device was configured in the MCP
 +
=== 3.0.1 ===
 +
*you can now limit the number of virtual points and registers read and written by HSYCO, and have access to all of the 1024 registers; defaults are unchanged
 +
=== 3.0.0 ===
 +
*initial release
 +
 +
----
 +
 +
 +
''HSYCO and Home Systems Consulting are registered trademarks of Home Systems Consulting SpA. Java and JavaScript are registered trademarks of Oracle and/or its affiliates. CONTATTO and DUEMMEGI are registered trademarks of DUEMMEGI SRL. Other products or company names can be trademarks or registered trademarks of other companies and are used for demonstrative purposes only, with no violation intent.''

Latest revision as of 10:08, 27 May 2016

The CONTATTO system is DUEMMEGI’s proprietary bus architecture for building automation. HSYCO fully integrates with this system through the MCP control and gateway module, and its FXP-XT serial communication protocol.

A serial connection between the MCPXT and the HSYCO SERVER is required for the integration, either directly through the server’s RS-232 port or via the RS-232 port of a supported serial to IP gateway, including the WEBS module.

The MCP4 can be connected via the integrated serial to IP gateway.

The Contatto I/O Server requires MCP-XT firmware version 3.0 or later. The MCPIDE configuration tools pass-through support for secure access to the MCP via HSYCO requires MCPIDE version 3.2.3 or later.

Communication

Use a DE-9 (often called DB-9) male-female RS-232 straight cable to connect the RS-232 MCPXT port to the serial port on HSYCO SERVER or serial gateway. You can also connect the MCPXT using the RS-485 port. The MCP4 can also be connected via the integrated serial to IP gateway.

RS-232 parameters:

Baud rate 9600, 38400, 57600 or 115200 bps (according to the MCP serial port setting)
Data bits 8
Stop bit 1
Parity none
Flow control none

Note A speed of 115200 bps is recommended to achieve good performance, particularly when the number of devices connected to the bus is large.

HSYCO Configuration

You can define and connect to more than one CONTATTO bus using several MCP gateways.

The CONTATTO I/O Server also supports dual, redundant connections between HSYCO and MCP.

If the main connection fails, HSYCO automatically re-routes the communication with MCP through the fail-over connection.

Options

ID Default Values Description
startupevents false true generate IO events also during the driver’s start-up phase
false start generating events only after HSYCO is aligned with the current status of the system
inputdiscovery false true auto-detects CONTATTO’s input devices as configured in the MCP, and automatically creates the list of all detected devices and individual data points in the systemtopo.txt file. Should be enabled to allow the automatic update of (button) objects’ states
false auto-detect for input devices is disabled
outputdiscovery true true auto-detects CONTATTO’s output devices as configured in the MCP, and automatically creates the list of all detected devices and individual data points in the systemtopo.txt file. Should be enabled to allow the automatic update of (button) objects’ states
false auto-detect for output devices is disabled
virtualdiscovery false true auto-detects CONTATTO’s virtual points for input and output devices as configured in the MCP, and automatically creates the list of all detected virtual data points in the systemtopo.txt file. Should be enabled to allow the automatic update of (button) objects’ states
false auto-detect for devices’ virtual data points is disabled
virtualpoints false 1 ... 2032 enables polling for the first n virtual points of the MCP. Enable this option only if you need to generate I/O events based on these virtual points
true enables polling for all the 2032 virtual points of the MCP
false polling of the MCP virtual data points is disabled
registers false 1 ... 1024 enables polling for registers R0-Rn of the MCP. Enable this option only if you need to generate I/O events based on these registers
true enables polling for registers R0-R127 of the MCP
false polling of the MCP registers is disabled
powerdisplay false ≥ 0 (MODANA address) enables the automatic display in the GUI of the total real power measured by a DFANA module connected to this MCP. Note that, if you have more than one MCP gateway, you should enable this option for one gateway only
false power display disabled for this MCP
powersensivity 50 ≥ 0 measured power changes are reported only if the difference from last reading is equal or greater than the power sensivity option, in Watts
detectevents false true generate forced events when a device is detected at start-up
false do not generate events when a device is detected at start-up
toolspassword string set this option with a long string (only letters and numbers) password to allow the remote connection of MCP-IDE and other configuration tools to the MCP gateways that are connected to HSYCO. For additional security, it is recommended to set this option only when required
language english en it fr language for all messages from the CONTATTO system: English, Italian or French

Initialization and Connection Events

Event name Value Description
connection online connection established to the MCP module
offline HSYCO can’t connect to the MCP module
detected.input.<n>. model name an input device of the type passed as value has been detected at address <n>, using addresses
detected.output.<n>. model name an output device of the type passed as value has been detected at address <n>, using addresses

The Device Configuration Database

The systemtopo.txt file contains the list of all devices and their individual input, output and virtual data points that could be directly associated to graphic object in the Web-based user interface. This file can be filled manually or automatically by HSYCO at start-up.

To enable automatic discovery and automatic generation of devices’ information in the systemtopo file, use the inputdiscovery, outputdiscovery and virtualdiscovery options in Settings. The default behavior is to only discover devices with output data points.

This is an example of an automatically generated systemtopo.txt file:

(devices)
contatto.o10.1 : LIGHT ; LIGHT
contatto.o6.1 : LIGHT ; DIMMER
contatto.o7.2 : LIGHT ; LIGHT
contatto.o7.1 : LIGHT ; DIMMER
contatto.o9.2 : AUTOM ; VSHUT
contatto.o5.4 : LIGHT ; LIGHT
contatto.o9.1 : AUTOM ; VSHUT
contatto.o5.3 : LIGHT ; LIGHT
contatto.o5.2 : LIGHT ; LIGHT
contatto.o5.1 : LIGHT ; LIGHT

You should then manually add comments and other optional parameters:

(devices)
contatto.o10.1 : LIGHT ; LIGHT; main entrance light
contatto.o6.1 : LIGHT ; DIMMER; lobby dimmer
contatto.o7.2 : LIGHT ; LIGHT; kitchen workbench
contatto.o7.1 : LIGHT ; DIMMER; kitchen main dimmer

MCP Virtual Data Points and Registers

The MCP implements 2032 virtual points for binary (on/off) data and 1024 registers for positive scalar values (0-65535). All the virtual points and the registers can optionally generate I/O events. You can also write to the virtual data points and registers using the IO action in EVENTS or ioSet() method in Java.

You cannot directly control the MCP virtual data points and registers using GUI objects.

To enable polling of the current state of the MCP’s virtual data points, enable the virtualpoints options in hsyco.ini.

To enable polling of the current state of the MCP’s registers, enable the registers options in hsyco.ini.

If you only have to write to virtual points or registers, enabling polling is not strictly required.

ID Value R/W Description
v0.<n> 0 RW virtual data point <n> off (<n>: 1-2032)
1 RW virtual data point <n> on (<n>: 1-2032)
r0.<n> <x> RW register <n> off (<n>: 0-1023) set to value <x> (<x>: 0-65535)

MCP Internal Clock

The MCP module has an integrated real-time clock. You can use the clock datapoint to read the MCP date and time, and set the MCP clock to HSYCO’s current time.

ID Value R/W Description
clock yyyy-mm-dd hh:mm:ss R the MCP clock current time
read W read the MCP clock, and the delta with HSYCO’s time
sync W set the MCP clock to HSYCO’s current time
clock.delta integer number R the delta time in seconds between the MCP and HSYCO clocks. A positive number means that the MCP clock is ahead of HSYCO

CONTATTO Modules Events and Control

Module Code Description
MOD8I/A 8 digital input module for NO contacts in modular housing
MOD32I/A 32 digital input module for NO contacts in modular housing
MOD32IN 32 digital input module for NO contacts in modular housing
MOD8INP2/A 8 digital input module for NO contacts
MOD8INP2/C 8 digital input module for NC contacts
MOAN/I 0÷10V analog input module
MOAN/I4 quad 0÷10V analog input module
MI420 4÷20mA analog input module
MI420-X4 quad 4÷20mA analog input module
MOD4AM12/V/I 4-channel 0÷10V or 4÷20mA (0÷21mA) analog input module
MOD2PT input module for two PT100 temperature probes
MODCNT 4-channel counter module in modular housing
MODNTC input module for ambient temperature sensors and potentiometers
MOD4I/A 4-digital input module for NO contacts in modular housing
MOD4I/S 4-digital input module for NO contacts in 2M modular housing
MODLUX ambient light measurement module with sensor for ceiling mounting
MODMETEO meteorological data detection module for Contatto bus
MOD8R 8 power relay output module
MODPNP 8 positive logic (PNP) “open collector” digital output module
MODREL 8 relay output compact module in DIN 3M housing
MOAN/U 0÷10V analog output module
MO420 4÷20mA analog output module
MODLC MODLC-P ambient light regulator module with integrated sensor
MOD4-4S 4 digital input and 4 power relay output multifunction module
MOD2-2R 2 digital input and 2 power relay output module
MOD4-4 4 digital input and 4 digital output module
MOD2DM 2x300W dimmer module
MOD2DV dual 1-10V output for electronic ballast driving
MOD8IL 8 digital input – 8 LED output module for wall box
MOD4DV quad 0-10V output module for generic applications or for external dimmers control
MODDMX DMX gateway
MODDALI 4-channel DALI gateway
CLIMA2 module for the regulation of the ambient temperature
MODANA network analyzer module for Contatto bus
MODPQ5 tags proximity reader and programmer
MODHT hotel room controller
MODCA access control module
MODKB keypad access control module
MODDI 500W IGBT dimmer module
MODCL temperature control module

MOD8I/A

8 digital input module for NO contacts in modular housing.

It uses one input address in the CONTATTO bus.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on

MOD32I/A

32 digital input module for NO contacts in modular housing.

It uses four addresses of the Contatto bus, one for each group of 8 inputs.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on
i<address+1>.1 0 R input pin 1 off
1 R input pin 1 on
i<address+1>.2 0 R input pin 2 off
1 R input pin 2 on
i<address+1>.3 0 R input pin 3 off
1 R input pin 3 on
i<address+1>.4 0 R input pin 4 off
1 R input pin 4 on
i<address+1>.5 0 R input pin 5 off
1 R input pin 5 on
i<address+1>.6 0 R input pin 6 off
1 R input pin 6 on
i<address+1>.7 0 R input pin 7 off
1 R input pin 7 on
i<address+1>.8 0 R input pin 8 off
1 R input pin 8 on
i<address+2>.1 0 R input pin 1 off
1 R input pin 1 on
i<address+2>.2 0 R input pin 2 off
1 R input pin 2 on
i<address+2>.3 0 R input pin 3 off
1 R input pin 3 on
i<address+2>.4 0 R input pin 4 off
1 R input pin 4 on
i<address+2>.5 0 R input pin 5 off
1 R input pin 5 on
i<address+2>.6 0 R input pin 6 off
1 R input pin 6 on
i<address+2>.7 0 R input pin 7 off
1 R input pin 7 on
i<address+2>.8 0 R input pin 8 off
1 R input pin 8 on
i<address+3>.1 0 R input pin 1 off
1 R input pin 1 on
i<address+3>.2 0 R input pin 2 off
1 R input pin 2 on
i<address+3>.3 0 R input pin 3 off
1 R input pin 3 on
i<address+3>.4 0 R input pin 4 off
1 R input pin 4 on
i<address+3>.5 0 R input pin 5 off
1 R input pin 5 on
i<address+3>.6 0 R input pin 6 off
1 R input pin 6 on
i<address+3>.7 0 R input pin 7 off
1 R input pin 7 on
i<address+3>.8 0 R input pin 8 off
1 R input pin 8 on

MOD32IN

32 digital input module for NO contacts in modular housing.

It uses one addresses of the Contatto bus and four channels, one for each group of 8 inputs.

ID Value R/W Description
i<address>.N

N=1-32

0 R input pin N off
1 R input pin N on

MOD8INP2/A

8 digital input module for NO contacts.

It uses one input address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on

MOD8INP2/C

8 digital input module for NC contacts.

It uses one input address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on

MOAN/I

0÷10V analog input module.

It uses one input address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 255 R voltage value divided in 255 steps

MOAN/I4

Quad 0÷10V analog input module.

It uses four consecutive addresses of the Contatto bus, one for each input.

ID Value R/W Description
i<address>.1 0 ... 255 R voltage value divided in 255 steps
i<address+1>.1 0 ... 255 R voltage value divided in 255 steps
i<address+2>.1 0 ... 255 R voltage value divided in 255 steps
i<address+3>.1 0 ... 255 R voltage value divided in 255 steps

MI420

4÷20mA analog input module.

It uses one input address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 255 R current value divided in 255 steps

MI420-X4

Quad 4÷20mA analog input module.

It uses four consecutive addresses of the Contatto bus, one for each input.

ID Value R/W Description
i<address>.1 0 ... 255 R current value divided in 255 steps
i<address+1>.1 0 ... 255 R current value divided in 255 steps
i<address+2>.1 0 ... 255 R current value divided in 255 steps
i<address+3>.1 0 ... 255 R current value divided in 255 steps

MOD4AM12/V/I

4-channel 0÷10V or 4÷20mA (0÷21mA) analog input module.

It uses one input address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 4095 R measurement range divided in 4095 steps
i<address>.2 0 ... 4095 R measurement range divided in 4095 steps
i<address>.3 0 ... 4095 R measurement range divided in 4095 steps
i<address>.4 0 ... 4095 R measurement range divided in 4095 steps

MOD2PT

Input module for two PT100 temperature probes.

It uses one or two addresses according to how the dip-switch is set.

If both channels are enabled (IN1 and IN2), setting the n “base” address through the FXPRO programmer, the input address and address+1 (consecutive) will be automatically assigned to the module.

ID Value R/W Description
i<address>.1 0 ... 255 R range –40 ÷ +87.5°C: code 0 corresponds to –40°C and code 255 corresponds to +87.5°C
i<address+1>.1 0 ... 255 R range –40 ÷ +87.5°C: code 0 corresponds to –40°C and code 255 corresponds to +87.5°C

MODCNT

4-channel counter module in modular housing.

It uses one input address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 65535 R number of pulses
i<address>.2 0 ... 65535 R number of pulses
i<address>.3 0 ... 65535 R number of pulses
i<address>.4 0 ... 65535 R number of pulses

MODNTC

Input module for ambient temperature sensors and potentiometers.

It uses one input address of the Contatto bus.

The temperature values measured by MODNTC module are reported as Kelvin degrees multiplied by 10; in other words, 0°C will be reported as 2730, 0.1°C will be reported as 2731 and so on.

Concerning the potentiometer channels, the values read from the module will be 0 with the potentiometer at its minimum position and it will be 1000 with the potentiometer at its maximum position.

ID Value R/W Description
i<address>.1 0 ... 4095 R temperature value
i<address>.2 0 ... 4095 R temperature value
i<address>.3 0 ... 4095 R temperature value
i<address>.4 0 ... 4095 R temperature value

MOD4I/A

4-digital input module for NO contacts in modular housing.

It uses one input address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
i<address> 0 R input pin 1 off
1 R input pin 1 on
i<address+1> 0 R input pin 1 off
1 R input pin 1 on
i<address+2> 0 R input pin 1 off
1 R input pin 1 on
i<address+3> 0 R input pin 1 off
1 R input pin 1 on

MOD4I/S

4-digital input module for NO contacts in 2M modular housing.

It uses one address of the Contatto bus.

ID Value R/W Description
i<address> 0 R input pin 1 off
1 R input pin 1 on
i<address+1> 0 R input pin 1 off
1 R input pin 1 on
i<address+2> 0 R input pin 1 off
1 R input pin 1 on
i<address+3> 0 R input pin 1 off
1 R input pin 1 on

MODLUX

Ambient light measurement module with sensor for ceiling mounting.

It uses one address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 1023 R ambient brightness value

MODMETEO

Meteorological data detection module for Contatto bus.

It uses one input address and, if enabled by the configuration panel of MCP IDE, one output address with the same value.

ID Value R/W Description
i<address>.temp <temp> R temperature value (in C/10)
i<address>.lux <lux*10> R daylight value in tens of LUX
i<address>.wind 1 m/s / 10 R wind speed value
i<address>.rain 0 R no rain
1 R rain
i<address>.night 0 R day
1 R night
i<address>.temp.limit 0 R measured temperature < threshold
1 R measured temperature > threshold
i<address>.lux.limit 0 R measured daylight < threshold
1 R measured daylight > threshold
i<address>.wind.limit 0 R measured wind speed < threshold
1 R measured wind speed > threshold
i<address>.light.south 0 R light not from South
1 R light from South
i<address>.light.west 0 R light not from West
1 R light from West
i<address>.light.east 0 R light not from East
1 R light from East
i<address>.fault 0 R sensor works correctly
1 R lsensor failure
o<address>.temp <temp> RW temperature threshold (in C/10)
off RW temperature threshold off
o<address>.lux <lux*10> RW daylight threshold
off RW daylight threshold off
o<address>.wind 1 m/s / 10 RW wind speed threshold
off RW wind speed threshold off

MOD8R

8 power relay output module.

It uses one output address of the Contatto bus.

ID Value R/W Description
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on
o<address>.5 0 RW output pin 5 off
1 RW output pin 5 on
o<address>.6 0 RW output pin 6 off
1 RW output pin 6 on
o<address>.7 0 RW output pin 7 off
1 RW output pin 7 on
o<address>.8 0 RW output pin 8 off
1 RW output pin 8 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MODPNP

8 positive logic (PNP) “open collector” digital output module.

It uses one output address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on
o<address>.5 0 RW output pin 5 off
1 RW output pin 5 on
o<address>.6 0 RW output pin 6 off
1 RW output pin 6 on
o<address>.7 0 RW output pin 7 off
1 RW output pin 7 on
o<address>.8 0 RW output pin 8 off
1 RW output pin 8 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MODREL

8 relay output compact module in DIN 3M housing.

It uses one output address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on
o<address>.5 0 RW output pin 5 off
1 RW output pin 5 on
o<address>.6 0 RW output pin 6 off
1 RW output pin 6 on
o<address>.7 0 RW output pin 7 off
1 RW output pin 7 on
o<address>.8 0 RW output pin 8 off
1 RW output pin 8 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MOAN/U

0÷10V analog output module.

It uses one output address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
o<address> x/255 R value in fractional format, where 0 ≤ x ≤ 255
o<address> <x%> W the percentage of signal (0÷100%) applied to the output
0...255 W convert the 8 bits digital code received through the bus in the proper analog level.
x/y W fractional format, formatted as “x/y”, where 0 ≤ x ≤ y

MO420

4÷20mA analog output module.

It uses one output address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
o<address> <x%> RW the percentage of signal (0÷100%) applied to the output
0...255 RW convert the 8 bits digital code received through the bus in the proper analog level
x/y RW fractional format, formatted as “x/y”, where 0 ≤ x ≤ y

MODLC and MODLC-P

Ambient light regulator module with integrated sensor.

It uses one input address and, if enabled by the configuration panel of MCP IDE, one output address with the same value.

ID Value R/W Description
i<address>.lux value equivalent to three times the brightness in lux detected by the sensor R the brightness value in lux detected by the MODLC
i<address>.level calculated value for the automatic brightness regulation R the value to be sent to the dimmer in order to execute the automatic regulation
i<address>.mode auto R automatic regulation
man R manual regulation
i<address>.in 0 R digital input OFF
1 R digital input ON
o<address>.setpoint setpoint value RW set the setpoint for the automatic brightness regulation
o<address>.mode auto RW set automatic regulation
man RW set manual regulation
o<address>.in.reset 0 RW not active
1 R force the expiring of the deactivation delay time of the digital input
o<address>.mode.reset 0 RW not active
1 R disable the automatic regulation and it reset the input channel

MOD4-4S

4 digital input and 4 power relay output multifunction module.

HSYCO supports two configurations only: four independent outputs, or two shutters.

When set as four independent outputs, the module must be configured with the same base address for input and output.

For example:

(I20, O20)

The input address must be enabled. Configuration switches must be set as SW1=OFF, SW2=OFF and SW5=ON.

When set as two shutters, the module must be configured with the same base address for input and output.

For example:

(I20, O20, O21)

The input address must be enabled. Configuration switches must be set as SW1=ON, SW2=ON and SW5=ON.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
o<address>.1 up RW shutter up command
down RW shutter down command
stop RW shutter stop command
unknown R unknown state
offup RW shutter off, up position
offdown RW shutter off, down position
o<address+1>.1 up RW shutter up command
down RW shutter down command
stop RW shutter stop command
unknown R unknown state
offup RW shutter off, up position
offdown RW shutter off, down position
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MOD2-2R

2 digital input and 2 power relay output module.

It uses one input address and one output address in the range 1 to 127 of the Contatto bus.

The input and the output addresses may be the same or they can be different each one to the other.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MOD4-4R

4 digital input and 4 digital output module.

It uses one input address and one output address in the range 1 to 127 of the Contatto bus.

The input and the output addresses may be the same or they can be different each one to the other.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on

MOD2DM

2x300W dimmer module.

It uses 2 output addresses (one for each dimmer channel) and 2 input addresses.

HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON.

ID Value R/W Description
i<address> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+1> 0...100 R brightness level according to current ramp
off R dimmer off
o<address> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD2DM commands table)
o<address+1> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD2DM commands table)

The dimmer level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “n/m”, where 0 <= n <= m.

MOD2DV

Dual 1-10V output for electronic ballast driving.

It uses 2 output addresses (one for each dimmer channel) and 2 input addresses.

HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON.

ID Value R/W Description
i<address> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+1> 0...100 R brightness level according to current ramp
off R dimmer off
o<address> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD2DV commands table)
o<address+1> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD2DV commands table)

The dimmer level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “n/m”, where 0 <= n <= m.

MOD8IL

8 digital input – 8 LED output module for wall box.

It uses 1 input address and 1 output address.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on
o<address>.5 0 RW output pin 5 off
1 RW output pin 5 on
o<address>.6 0 RW output pin 6 off
1 RW output pin 6 on
o<address>.7 0 RW output pin 7 off
1 RW output pin 7 on
o<address>.8 0 RW output pin 8 off
1 RW output pin 8 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MOD4DV

Quad 0-10V output module for generic applications or for external dimmers control.

It uses 4 consecutive output addresses (one for each dimmer channel) and 4 input addresses.

HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON, SW5=OFF.

ID Value R/W Description
i<address> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+1> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+2> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+3> 0...100 R brightness level according to current ramp
off R dimmer off
o<address> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD4DV commands table)
o<address+1> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD4DV commands table)
o<address+2> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD4DV commands table)
o<address+3> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD4DV commands table)

The dimmer level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “x/y”, where 0 <= x <= y
  • values in the range 101÷255. Values and commands are described in the MOD4DV Programming Handbook (Operation from the bus, page 3).

MODDMX

ModDMX module allows to handle, through the Contatto bus, up to 32 DMX devices. ModDMX module makes possible the communication on the first 64 of 512 DMX channels allowed by this protocol.

It uses 1 output address, 1-channel 16-bit.

ID Value R/W Description
o<address>.<DMX address> 0...100 RW Values and commands are described in the MODDMX Programming Handbook

MODDALI

ModDALI module allows the management, through the Contatto bus, of 4 DALI lines upon it's possible to connect up to 32 devices for line (or channel). In this way it's possible to control and regulate up to 128 DALI ballasts (or other similar devices).

It uses 1 output address and, if enabled, 1 input address with the same value.

ID Value R/W Description
o<address>.<channel> refresh RW update the state of the DALI devices
o<address>.<channel>
o<address>.<channel>.all
o<address>.<channel>.0
off RW switch off all available DALI devices
<level> RW set a level for all available devices
o<address>.<channel>.group.<DALI group> off RW switch off all DALI devices on that group
<level> RW set a level for all DALI devices in that group
o<address>.<channel>.<DALI address> off RW switch off a single DALI device
<level> RW set a level for a single DALI device
fault R DALI device fault
>100 RW special functions: possible values are described in the MODDALI Programming Handbook
i<address>.<channel>.polling off RW polling disabled
on RW polling enabled
i<address>.<channel>.test 0 RW test button not pressed
1 RW test button pressed
i<address>.<channel>.dali nopower RW lamp failure
open RW DALI line broken
short RW DALI line short circuit
on RW on DALI line
i<address>.<channel>.1 fault RW ballast 1 lamp failure
unknown R ballast 1 lamp unknown state

The channel level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “x/y”, where 0 <= x <= y
  • values in the range 101÷255. Values and commands are described in the MODDALI Programming Handbook.

CLIMA2

Module for the regulation of the ambient temperature.

It uses 1 input and 1 output address that are equal each one to the other, so only a base address is needed.

ID Value R/W Description
i<address> on R zone on
off R zone off
i<address>.mode summer R summer mode
winter R winter mode
i<address>.status off R off status
heating R heating request
cooling R cooling request
i<address>.fan off R fan off
min R min speed
med R med speed
max R max speed
i<address>.temp fault R NTC probe fault
<temp> R ambient temperature value, in C/10
i<address>.setpoint.temp <temp> R real setpoint value, in C/10
i<address>.knob 0 ... 1000 R position of rotary knob
o<address>.mode summer RW set summer
winter RW set winter
o<address> on RW zone on
off RW zone off
o<address>.setpoint.temp 0...400 RW set and read the value of central setpoint (temp in C/10)
o<address>.setpoint.delta.neg <temp> RW set and read the MAX negative delta
o<address>.setpoint.delta.pos <temp> RW set and read the MAX positive delta
o<address>.led.1 red
r
RW LED 1 red
green
g
RW LED 1 green
yellow
y
RW LED 1 yellow
off RW set off
o<address>.led.2 red
r
RW LED 2 red
green
g
RW LED 2 green
yellow
y
RW LED 2 yellow
off RW set off
o<address>.led.3 red
r
RW LED 3 red
green
g
RW LED 3 green
yellow
y
RW LED 3 yellow
off RW set off
o<address>.led.4 red
r
RW LED 4 red
green
g
RW LED 4 green
yellow
y
RW LED 4 yellow
off RW set off

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MODANA

Network analyzer module for Contatto bus.

It uses, in dynamic mode, up to a maximum of 5 consecutive input addresses and, if enabled, 1 output address equal to the base address.

The module's firmware should be version 1.5 or later to support negative values for active power readings.


Note The module must be configured with the same base address for input and output.

For example:

(I7, O7)
ID Value R/W Description
i<address>.v12 [V] R chained voltage phase 1-2
i<address>.v23 [V] R chained voltage phase 2-3
i<address>.v31 [V] R chained voltage phase 3-1
i<address>.vtm [V] R average chained voltage
i<address>.i1 [A] R current phase 1
i<address>.i2 [A] R current phase 2
i<address>.i3 [A] R current phase 3
i<address>.itm [A] R average current
i<address>.ptot [W] R total active power
i<address>.ptotk [kW] R total active power
i<address>.qtot [W] R total reactive power
i<address>.qtotk [kW] R total reactive power
i<address>.pf [pf] R total power factor
i<address>.frequency [Hz] R frequency
i<address>.v1n [V] R voltage phase 1
i<address>.v2n [V] R voltage phase 2
i<address>.v3n [V] R voltage phase 3
i<address>.p1 [W] R active power phase 1
i<address>.p1k [kW] R active power phase 1
i<address>.p2 [W] R active power phase 2
i<address>.p2k [kW] R active power phase 2
i<address>.p3 [W] R active power phase 3
i<address>.p3k [kW] R active power phase 3
i<address>.q1 [W] R reactive power phase 1
i<address>.q1k [kW] R reactive power phase 1
i<address>.q2 [W] R reactive power phase 2
i<address>.q2k [kW] R reactive power phase 2
i<address>.q3 [W] R reactive power phase 3
i<address>.q3k [kW] R reactive power phase 3
i<address>.pf1 [pf] R power factor phase 1
i<address>.pf2 [pf] R power factor phase 2
i<address>.pf3 [pf] R power factor phase 3
i<address>.s1 [VA] R apparent power phase 1
i<address>.s1k [kVA] R apparent power phase 1
i<address>.s2 [VA] R apparent power phase 2
i<address>.s2k [kVA] R apparent power phase 2
i<address>.s3 [VA] R apparent power phase 3
i<address>.s3k [kVA] R apparent power phase 3
i<address>.stot [VA] R total apparent power
i<address>.hours [hours] R hour-meter
i<address>.temperature [°C] R cabinet temperature
i<address>.energy.active [KWh] R positive active energy
i<address>.energy.activeneg [KWh] R negative active energy
i<address>.energy.reactive [KVARh] R positive reactive energy
i<address>.energy.reactiveneg [KVARh] R negative reactive energy
i<address>.pm [W] R average positive active power
i<address>.qm [VAR] R average positive reactive power
i<address>.reset.energy 1 RW reset energies
0 RW ---
i<address>.reset.hours 1 RW reset hour-meter
0 RW ---

MODPQ5

Q5 tags proximity reader and programmer module.

Uses 1 input address on the Contatto bus. Write operations are performed through direct writes to the module’s RAM.

ID Value R/W Description
i<address>.data 0
<tag data>
R 30 characters hexadecimal representation of the 15 bytes of tag data; “0” if the module is not seeing any tag
i<address>.data.write 0 R the tag has been removed from the programmer after writing, or the module is not seeing any tag
1 R the tag write operation was successful
i<address>.reader.error 0 R reader/writer normal status
1 R reader/writer module error (normally occurs when the reader is not connected to the MODPQ5 module)
i<address>.tag.error 0 R the tag is valid
1 R the tag is not valid
i<address>.request.error 0 R no request or handshake errors detected
1 R handshake error
i<address>.data.error 0 R tag data ok
1 R tag data errors detected
i<address>.unknown.error 0 R no unknown errors
1 R unknown error detected
i<address>.write <tag data> R tag data write successful
error R tag data write error
o<address>.write <tag data> W 30 characters hexadecimal representation of the 15 bytes data to be written on the tag

MODHT

MODHT is the hotel room controller module.

It uses 1 input and 1 output address.

Tags configuration data are written to the module’s EEPROM (persistent internal memory).

ID Value R/W Description
i<address>.door 0 R door closed
1 R door open
i<address>.window 0 R window closed
1 R window open
i<address>.panic 0 R panic request not active
1 R panic request
i<address>.busy 0 R room is free
1 R room is occupied
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.ev 0 R EV output off
1 R EV output on
i<address>.aux 0 R AUX output off
1 R AUX output on
i<address>.dnd 0 R do not disturb not active
1 R do not disturb
i<address>.service 0 R room service request not active
1 R room service request
i<address>.booked 0 R room is not booked
1 R room is booked
i<address>.mode summer R summer mode
winter R winter mode
i<address>.fan off R fan set to off
auto R fan speed set to auto
min R fan speed set to minimum
med R fan speed set to medium
max R fan speed set to max
i<address>.fan.status 0 R fan is off
1 R fan is on (cooling or heating)
i<address>.temp <temp> R ambient temperature value (in C/10)
i<address>.setpoint.temp <temp> R setpoint value (in C/10)
i<address>.tag.door 1...5 R type of tag that is opening the door (1 to 4 are service tags; 5 is a customer tag). After 5 seconds the value is reset to 0
i<address>.tag.room 0 R no tag present in room’s reader
1...5 R type of tag inserted in the room’s reader (1 to 4 are service tags; 5 is a customer tag)
i<address>.tag.<n> <tag data> R 24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5) stored in module’s EEPROM
i<address>.pcam.error 0 R PCAM module ok
1 R PCAM module error
i<address>.tpr.error 0 R TPR/H module ok
1 R TPR/H module error
i<address>.mask <mask data> R 24 characters hexadecimal representation of the 12 bytes tag mask stored in module’s EEPROM
i<address>.data.door 0
<tag data>
R 30 characters hexadecimal representation of the 15 bytes of tag data being read from the door reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
i<address>.data.room 0
<tag data>
R 30 characters hexadecimal representation of the 15 bytes of tag data being read from the room reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
i<address>.setpoint.summer.<n>
i<address>.setpoint.winter.<n>
<temp> R winter/summer setpoint <n> (1...3) current value (in C/10)
i<address>.setpoint.delta.summer.low
i<address>.setpoint.delta.summer.high
i<address>.setpoint.delta.winter.low
i<address>.setpoint.delta.winter.high
<temp delta limit>
1...9
R the current temperature setpoint low/high limits for winter and summer modes (in C)
o<address>.tag.<n> <tag data> R tag data write successful
error R tag data write error
o<address>.mask <mask data> R mask data write successful
error R mask data write error
o<address>.setpoint.summer.<n>
o<address>.setpoint.winter.<n>
<temp> R winter/summer setpoint N (1-3) write successful (in C/10)
error R setpoint write error
o<address>.setpoint.delta.summer.low
o<address>.setpoint.delta.summer.high
o<address>.setpoint.delta.winter.low
o<address>.setpoint.delta.winter.high
<temp delta limit>
1...9
R setpoint min/max limit for winter/summer write successful (in C)
error R setpoint limit write error
o<address>.ev.enable 0 W EV output disabled
1 W EV output enabled
o<address>.aux.enable 0 W AUX output disabled
1 W AUX output enabled
o<address>.panic.reset 1 W panic request reset
o<address>.busy 0 W set room status to free
1 W set room status to occupied
o<address>.ev 0 W EV output off
1 W EV output on
o<address>.aux 0 W AUX output off
1 W AUX output on
o<address>.dnd.reset 1 W do not disturb reset
o<address>.service.reset 1 W do not disturb reset
o<address>.booked 0 W set room as not booked
1 W set room as booked
o<address>.mode summer W set room to summer mode
winter W set room to winter mode
o<address>.fan off W set fan off
auto W set fan to auto mode
o<address>.comfort 0 W force comfort set-point off
1 W force comfort set-point on
o<address>.3 0 W output pin 3 off
1 W output pin 3 on
o<address>.fan.heating.min 0 W reset heating speed limit
1 W limit heating speed to min
o<address>.fan.cooling.min 0 W reset cooling speed limit
1 W limit cooling speed to min
o<address>.tag.<n> read W read the 12 bytes stored in module’s EEPROM for service N tags (<n> from 1 to 5)
<tag data> W 24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5), to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
o<address>.mask read W read the 12 bytes mask stored in module’s EEPROM
<mask data> W 24 characters hexadecimal representation of the 12 bytes tag mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
o<address>.setpoint.summer.<n>
o<address>.setpoint.winter.<n>
read W read winter/summer setpoint <n> (1-3)
<temp> W set winter/summer setpoint <n> (1-3)
o<address>.setpoint.delta read W read winter and summer, low and high setpoint limits
o<address>.setpoint.delta.summer.low
o<address>.setpoint.delta.summer.high
o<address>.setpoint.delta.winter.low
o<address>.setpoint.delta.winter.high
<temp delta limit> W set winter/summer, low/high setpoint limit (in C)

MODCA

MODCA is the access control module.

It uses 1 input and 1 output address.

Tags configuration data are written to the module’s EEPROM (persistent external memory).

Site codes and the tags mask are written to the internal EEPROM.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.blocked 0 R access control enabled
1 R access blocked
i<address>.tpr.error 0 R TPR module ok
1 R TPR module error
i<address>.access.granted.1 0 R no tag present at antenna 1
1 R access granted to tag at antenna 1
i<address>.access.granted.2 0 R no tag present at antenna 2
1 R access granted to tag at antenna 2
i<address>.access.denied 0 R access denied flags reset
site R access denied due to site code error
code R access denied due to user code error
total.limit R access denied due to exceeded total number of access grants
daily.limit R access denied due to exceeded daily number of access grants
time R access denied due to time range violation
day R access denied due to weekday violation
expired R access denied due expired tag
i<address>.denied.code <tag code> R the tag code (decimal value of selected two bytes of the tag data) that was denied access
i<address>.granted.1.code <tag code> R the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 1
i<address>.granted.2.code <tag code> R the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 2
i<address>.site.<n> <site data> R 16 characters hexadecimal representation of the 8 bytes data representing the Nth site code (N from 1 to 4) stored in module’s EEPROM
i<address>.mask <mask data> R 16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
i<address>.mask <mask data> R 16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
i<address>.user.<n> <user data> R 32 characters hexadecimal representation of the 16 bytes data for user <n> (N from 1 to 2000) stored in module’s EEPROM
o<address>.site.<n> <site data> R site data write successful
error R site data write error
o<address>.mask <mask data> R mask data write successful
error R mask data write error
o<address>.user.<n> <user data> R user data write successful
error R user data write error
o<address>.relay 0 W relay output off
1 W relay output pulse on, with pulse length according to the MODCA configuration (with firmware versions before 1.3 this data point remains at 1 and should be reset to 0 with an explicit command; with firmware 1.3 the data point value follows the relay state, and is automatically reset to 0 at the end of the pulse period)
o<address>.relay.forced 0 W forced relay mode not set (default behaviour)
1 W forced relay mode set: the relay remains closed until the relay.forced command is reset (available with MODCA firmware version 2.0 or later)
o<address>.block 0 W enable access control
1 W block access control
o<address>.access.granted.code 0 W reset
1 W allow access even when site code is not valid
o<address>.access.granted.total.limit 0 W reset
1 W allow access even when the total limit of access grants has been exceeded
o<address>.access.granted.daily.limit 0 W reset
1 W allow access even when the daily limit of access grants has been exceeded
o<address>.access.granted.time 0 W reset
1 W allow access even outside of the allowed timeframe
o<address>.access.granted.day 0 W reset
1 W allow access even outside of the allowed weekdays
o<address>.access.granted.expired 0 W reset
1 W allow access even when the tag is expired
o<address>.site.<n> read W read the 8 bytes stored in module’s EEPROM for site N code (<n> from 1 to 4)
<site data> W 16 characters hexadecimal representation of the 8 bytes data of site N code (N from 1 to 4), to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
o<address>.mask read W read the 8 bytes mask stored in module’s EEPROM
<mask data> W 16 characters hexadecimal representation of the 8 bytes site code mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
o<address>.user.<n> read W read the 16 bytes stored in module’s EEPROM for user N (<n> from 1 to 2000)
<user data> W 16 characters hexadecimal representation of the first 8 bytes of access control data for user N (N from 1 to 2000) , to be stored in module’s EEPROM
<reset> W reset to 0 the total and daily counters for user <n>
o<address>.users erase W deletes all users data. This action requires up to about 27 seconds to be completed. It also deletes all i<address>.user.<n> and o<address>.user.<n> data points

MODKB

MODKB is the keypad access control module.

It uses 1 input and 1 output address.

PIN configuration data are written to the module’s EEPROM (persistent memory).

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.access.granted.<n> 0 R reset
1 R access granted to PIN <n> (<n> from 1 to 30)
i<address>.pin <pin code> R the last pin code entered on the keypad (from 1 to 65535). Reset to 0 after programmed code persistence time
i<address>.access.granted.<n> 0 R access denied flags reset
site R access denied due to site code error
code R access denied due to user code error
time R access denied due to time range violation
day R access denied due to weekday violation
i<address>.pin.<n> <pin data> R 16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30) stored in module’s EEPROM
o<address>.pin.<n> <pin data> R pin data write successful
error R pin data write error
o<address>.relay 0 W relay output off
1 W relay output on (pulse output, resets to 0 immediately after the relay is closed, usually before the relay closure time)
o<address>.lock.all 0 W reset
1 W disables access to all PINs
o<address>.lock.<n> 0 W reset
1 W disables access to PIN <n> (<n> from 1 to 30)
o<address>.pin.<n> read W read the 8 bytes stored in module’s EEPROM for PIN <n> (<n> from 1 to 30)
<pin data> W 16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30), to be stored in module’s EEPROM

MODDI

500W IGBT dimmer module.

It uses 1 output address.

ID Value R/W Description
o<address> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...173 W command (see MODDI commands table)
o<address>.noline 0 R AC line detected
1 R AC line fault
o<address>.overcurrent 0 R normal
1 R overcurrent protection
o<address>.overvoltage 0 R normal
1 R overvoltage protection
o<address>.overtemperature 0 R normal
1 R overtemperature protection

The dimmer level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “n/m”, where 0 <= n <= m.

MODCL

Temperature control module.

It uses 1 input and one output address.

ID Value R/W Description
i<address> on R zone on
off R zone off
i<address>.mode winter R winter mode
summer R summer mode
i<address>.fan min R min fan speed
med R medium fan speed
max R max fan speed
off R fan off
i<address>.fan.mode man R manual fan mode
auto R auto fan mode
i<address>.setpoint 1 R setpoint 1
2 R setpoint 2
3 R setpoint 3
off R off
man R manual setpoint
i<address>.setpoint.mode man R manual setpoint mode
auto R auto setpoint mode
i<address>.temp <temp> R temperature value (in C/10)
fault R temperature sensor fault
i<address>.status off R off
cooling R cooling status mode
heating R heating status mode
o<address> on RW zone on (writing on to this datapoint doesn't turn the zone on, it simply resets the off command)
off RW zone off
o<address>.mode winter RW winter mode
summer RW summer mode
o<address>.setpoint.mode man RW manual mode
auto RW auto mode
off RW zone off
o<address>.setpoint 1 RW setpoint 1
2 RW setpoint 2
3 RW setpoint 3
0 RW setpoint off
man RW manual setpoint
o<address>.setpoint.temp.1 <temp> RW temperature setpoint 1 value (in C/10)
o<address>.setpoint.temp.2 <temp> RW temperature setpoint 2 value (in C/10)
o<address>.setpoint.temp.3 <temp> RW temperature setpoint 3 value (in C/10)
o<address>.setpoint.temp.man <temp> RW temperature manual setpoint value (in C/10)

User Interface

All CONTATTO devices data points that have been defined in the systemtopo.txt database are automatically listed in the Project Editor. Adding a button to control a device output point requires just a few clicks and no additional EVENTS logic.


IO Servers Contatto Project Editor.png


Besides the direct association of control buttons and data points, the CONTATTO driver also automatically updates graphical objects that represent values or states of complex devices, like the CLIMA2 temperature control unit. It will also automatically intercept buttons to manually set operation modes and temperature set-points.


CLIMA2

You can use the temp and tempmini objects to control CLIMA2 devices.


UI Object clima2.png


The fan button, in the bottom right-hand corner, is not enabled because the manual control of the fan speed is not available. The M button, in the top right-hand corner, allows to switch the module on or off.

You can also easily create customized controls for the CLIMA2, using standard graphic objects that are automatically set to show the device’s status and intercepted to send user commands.

UISET Actions

ID Attribute Set to Description
<address>.mode value SUMMER summer mode (cooling)
value WINTER winter mode (heating)
<address>.mode.label.summer visible true if CLIMA2 is in summer mode
<address>.mode.label.winter visible true if CLIMA2 is in winter mode
<address>.status value OFF zone off
value ON zone on
<address>.status.label.off visible true if the zone is not cooling or heating
<address>.status.label.cooling visible true if the zone is cooling
<address>.status.label.heating visible true if the zone is heating
<address>.fan value OFF fan off
value MIN minimum fan speed
value MED medium fan speed
value MAX maximum fan speed
<address>.fan.label.min visible true minimum fan speed
<address>.fan.label.med visible true medium fan speed
<address>.fan.label.max visible true maximum fan speed
<address>.setpoint.label.on visible true zone is on
<address>.setpoint.label.off visible true zone is off
<address>.setpoint.mode value ON zone is on
value OFF zone is off
<address>.setpoint.temp value <value> the active setpoint temperature, in Celsius degrees with one decimal digit, followed by " °C"
<address>.temp value <temp> the measured temperature, in Celsius degrees with one decimal digit, followed by " °C"
FAULT fault/error condition

USER Commands

Name Param Action
<address> on module on
off module off
mode.summer set summer mode (cooling)
mode.winter set winter mode (heating)
<address>.setpoint temp.up increase setpoint temperature in 0.5C steps
temp.down decrease setpoint temperature in 0.5C steps
0...400 set the setpoint to the defined value (in C/10)
mode cycle through on and off modes
mode.on module on
mode.off module off



MODCL

You can use the temp and tempmini objects to control MODCL devices.


The fan button, in the bottom right-hand corner, is not enabled because the manual control of the fan speed is not available. The M button, in the top right-hand corner, allows to switch the module to auto or manual mode, or off.

You can also easily create customized controls for the MODCL, using standard graphic objects that are automatically set to show the device’s status and intercepted to send user commands.

UISET Actions

ID Attribute Set to Description
<address>.mode value SUMMER summer mode (cooling)
WINTER winter mode (heating)
<address>.mode.label.summer visible true if MODCL is in summer mode
<address>.mode.label.winter visible true if MODCL is in winter mode
<address>.status value OFF zone off
ON zone on
<address>.status.label.off visible true if the zone is not cooling or heating
<address>.status.label.cooling visible true if the zone is cooling
<address>.status.label.heating visible true if the zone is heating
<address>.fan value OFF fan off
MIN minimum fan speed
MED medium fan speed
MAX maximum fan speed
<address>.fan.label.min visible true minimum fan speed
<address>.fan.label.med visible true medium fan speed
<address>.fan.label.max visible true maximum fan speed
<address>.setpoint value 1, 2, 3 setpoint N is active
MAN manual setpoint is active
OFF zone is off
<address>.setpoint.label.1 visible true setpoint 1 is active
<address>.setpoint.label.2 visible true setpoint 3 is active
<address>.setpoint.label.3 visible true setpoint 3 is active
<address>.setpoint.label.man visible true manual setpoint is active
<address>.setpoint.label.off visible true zone is off
<address>.setpoint.mode value AUTO automatic mode
MAN manual mode
OFF zone is off
<address>.setpoint.temp value <value> the active setpoint temperature, in Celsius degrees with one decimal digit, followed by " °C"
<address>.temp value <temp> the measured temperature, in Celsius degrees with one decimal digit, followed by " °C"
FAULT fault/error condition

USER Commands

Name Param Action
<address> mode cycle summer/winter modes
<address>.mode mode.summer set summer mode (cooling)
mode.winter set winter mode (heating)
<address>.setpoint.temp up increase current setpoint temperature in 0.5C steps
down decrease current setpoint temperature in 0.5C steps
<address>.setpoint.temp.N up increase setpoint N temperature in 0.5C steps
down decrease setpoint N temperature in 0.5C steps
0...400 set setpoint N to the given value (in C/10)
<address>.setpoint.temp.man up increase manual setpoint temperature in 0.5C steps
down decrease manual setpoint temperature in 0.5C steps
0...400 set manual setpoint to the given value (in C/10)
<address>.setpoint mode cycle through auto, manual and off modes
<address>.setpoint.mode auto set auto mode
man set manual mode
off zone off

Release Notes

3.5.1

  • MODANA updated to support negative active energy values (fw. 1.5 or later)

3.5.0

  • added support for MCP4
  • added support for MODCA firmware version 2.0, with new "relay.forced" datapoint
  • added support for MOD32IN
  • MODPQ5 is now identified with its unique ID. Use MCPIDE 3.2.3 or later to program the MCPXT/MCP4 to allow HSYCO to correctly identify this module

3.4.0

  • improved communication error logging
  • improved support of tools remote access
  • events generated during startup if startupevents=true are now executed sequentially
  • support for MODDI
  • support for MODCL

3.2.2

bug fixes:

  • the toolspassword optional parameter was incorrectly converted to lower case
  • fixed a bug that prevented reading the last 3 addresses of MOAN/I4 and MI420-X4 modules

3.2.1

  • added support for MODHT set-point delta limits read and write
  • the lux datapoint name was incorrectly set to ID.i<addr>.1 instead of ID.i<addr>.lux

3.2.0

  • support for MODCA, MODHT, MODKB, MODPQ5
  • new "detectevents" option, generates forced events when a device is detected at start-up
  • support for the toolspassword option, to allow MCP-IDE and other tools secure remote access to the MCP via HSYCO
  • new clock datapoint to read the MXP-XT internal clock and set it to HSYCO's time

3.0.3

  • optimized performance of MCP’s registers status polling
  • the server failed to initialized when an unsupported device was configured in the MCP

3.0.1

  • you can now limit the number of virtual points and registers read and written by HSYCO, and have access to all of the 1024 registers; defaults are unchanged

3.0.0

  • initial release


HSYCO and Home Systems Consulting are registered trademarks of Home Systems Consulting SpA. Java and JavaScript are registered trademarks of Oracle and/or its affiliates. CONTATTO and DUEMMEGI are registered trademarks of DUEMMEGI SRL. Other products or company names can be trademarks or registered trademarks of other companies and are used for demonstrative purposes only, with no violation intent.