Difference between revisions of "MyHome"

From HSYCO
Jump to navigation Jump to search
Line 121: Line 121:
 
|-
 
|-
 
|false
 
|false
|use the normal command session mode
+
|use the normal command session mode (required for the MH201)
 
|}
 
|}
  

Revision as of 19:17, 18 February 2021

MyHome is a proprietary bus system for home automation developed by BTicino. HSYCO fully integrates with MyHome using the OpenWebNet (OWN) protocol.

HSYCO supports all MyHome devices and features that the OWN protocol officially supports, including lighting, automation, scenes, AUX and CEN addressing, the temperature control unit and burglar alarm unit.

The bus architecture can be arranged as a single bus or with a riser and several local busses.

Communication

HSYCO supports the Ethernet IP connection to MyHome through IP-based OWN gateways, including the F452, F453, F454, F453AV, F459, MH200, MH200N, MH201 and MH SERVER 1.

HSYCO also supports the L4686SDK module through an USB connection and an associated virtual serial port.

Gateway Configuration

The OWN gateway must be configured to allow open OWN connections from the IP address assigned to the HSYCO server.

L4686SDK Module

The L4686SDK interface module is connected to HSYCO using a USB cable.

The operating system creates a virtual serial port; its name depends on your HSYCO server configuration, and should be ttyUSB0 if there are no other devices connected to the USB ports.

You could also use the ftdi-n-n.n alias, that is unique for each physical USB port on the server.

For example, in this screenshot we can take a look to the configuration with an L4686SDK connected to the second USB port (ttyUSB1)

Myhome-l4686sdk.png

L4686SDK Limitations

  • L4686SDK firmware version 1.20.0 or later is required
  • Not all protocol frames are supported. The I/O server has been tested with the following functions: scenarios, lights, automation, temperature control, AUX and CEN plus
  • Check the L4686SDK documentation to know which functions are actually supported, also based on the L4686SDK firmware version
  • The clock read and sync functions are not supported
  • HSYCO only support the L4686SDK module on a single main bus; private raiser buses are not supported
  • the USB connection cable should never be unplugged during normal operations. If the cable is unplugged, HSYCO will not be able to restore the connection to the L4686SDK until it is manually restarted.

HSYCO Configuration

Add a MYHOME I/O Server in the I/O Servers section of the Settings and set its parameters:

Communication

  • IP Address: IP address of the gateway
  • IP Port: TCP/IP port to use, leave blank to use default port 20000.

Authentication

  • Password: required when the OpenWebNet gateway requires the HMAC authentication or legacy authentication.

High Availability

  • Shutdown when inactive: defaults to false.

Options

ID Default Values Description
gui true true enables automatic support of Web GUI objects to show the status of the system and intercept control buttons
false disables support for the Web GUI
startupevents false true generate IO events also during the driver’s start-up phase
false start generating events only after HSYCO is aligned with the current status of the system
discovery true true auto-detects MyHome lighting and automation devices that are connected to the bus and are fully operational, and automatically creates the list of all detected devices and individual data points in the systemtopo.txt file
false auto-detect is disabled
monitoronly false true disable the Command Dispatcher and only use the I/O Server to monitor the bus status (this option is not available with the L4686SDK interface module)
false Command Dispatcher is enabled, and the I/O Server can send commands to the bus
tempignorelocaloffset false true when sending zones absolute setpoint commands, the local offset is not corrected
false setting a setpoint to an absolute value, it is corrected by the local offset
tempzones[Note 1] z<n> if you want to monitor and control temperature zones, all zone numbers should be listed with the tempzones option. <n> is the zone number. Multiple zones should be separated by semicolons
language en en, it, fr the language used for automatically generated GUI text fields
supersocket true true use the "super socket" command session mode
false use the normal command session mode (required for the MH201)

Note 1 
The 4695 four zone temperature control unit uses a zone address for the control unit itself. This address has to be marked as a special address in the tempzones parameter, enclosing it in round brackets.

For example:

tempZones=(32);33

defines a central unit having address 32, and an additional zone with address 33.

The MyHome I/O Server supports only one central unit for each SCS riser bus.

myhome.ini

The myhome.ini file is a specific configuration file located in the main directory (same directory as hsyco.ini or hsyco.jar).

This file is optional. It is only used to assign friendly names to the burglar alarm zones and technical alarms, so that these names are used in the GUI log and the security.log files.

If you have multiple My Home gateways with multiple burglar alarm panels, the parameters need to be defined for each system, using unique ids, according to the following table:

ID Description
security.zone.<n> the friendly name for burglar alarm zone <n>
security.aux.<n> the friendly name for burglar alarm technical alarm <n>

The myhome.ini is automatically detected at start-up and automatically reloaded whenever it is modified.

For example, the following myhome.ini file is used to define a few friendly names of two distinct My Home systems:

mh1.security.zone.1.name=entrance
mh1.security.zone.2.name=lobby
mh1.security.aux.1.name=flooding
mh2.security.zone.3.name=windows
mh2.security.zone.5.name=driveway

The Device Configuration Database

The systemtopo.txt file contains the list of all lighting and automation devices that could be directly associated to graphic object in the Web-based user interface.

This file can be filled manually or automatically by HSYCO at start-up. To enable automatic discovery and automatic generation of devices’ information in the systemtopo file, use the discovery option in System Settings. The discovery feature is enabled by default.

This is an example of an automatically generated systemtopo.txt file:

(devices)
mh.autom.82 : AUTOM ; VSHUT ; 
mh.autom.88 : AUTOM ; VSHUT ; 
mh.autom.93 : AUTOM ; VSHUT ; 
mh.autom.96 : AUTOM ; VSHUT ; 
mh.light.11 : LIGHT ; LIGHT ; 
mh.light.12 : LIGHT ; LIGHT ; 
mh.light.13 : LIGHT ; LIGHT ; 
mh.light.16 : LIGHT ; LIGHT ;
mh.light.25 : LIGHT ; DIMMER ; DIMMER

Note that HSYCO can automatically detects dimmer modules if they are on when discovery is performed. If a dimmer is off, it will be listed as an ordinary on/off light module, and should be manually changed to DIMMER.

You should manually add comments and other optional parameters:

(devices)
mh.autom.82 : AUTOM ; VSHUT ; driveway gate
mh.autom.88 : AUTOM ; VSHUT ; awning
mh.autom.93 : AUTOM ; VSHUT ; kitchen shutter
mh.autom.96 : AUTOM ; VSHUT ; bedroom shutter

Also, if you want to use (button) objects in the Project Editor to control scenes, you should manually add scenes definitions in systemtopo.txt, as HSYCO can’t automatically detect scene modules and stored scenes:

(devices)
mh.scene.94.5 : LIGHT ; SCENE ; close all shutters
mh.scene.94.10 : LIGHT ; SCENE ; night mode

Datapoints

The naming convention HSYCO uses for the events and to control all MyHome devices is closely related to the MyHome addressing standards and the OpenWebNet protocol implementation.

In OWN, the standard monitor and command frames have the following format:

*<who>*<what>*<where>##

The <who> field defines the module’s family or function. <what> is the state of a device, for example 0 for off and 1 for the on state of an on/off module. Finally, <where> is the module’s address, including the local bus number if the module is not on the riser bus.

With few exceptions, this frame format translates to the following event format inside HSYCO:

IO servername.<who>.<where> = <what>

The WHO field in OWN frames is a number, while we use a literal string in HSYCO to make names easier to read.

The table below lists all supported <who> functions and the HSYCO’s corresponding literals that form the prefix of all IO data points.

OWN WHO HSYCO Prefix Function Description
0 scene scenario module
1 light lighting module
2 autom automation module (inter-locking)
3 load load control
4 temp temperature control
5 security burglar alarm panel
9 aux auxiliary address
15 cen cen modules / addresses
25 cenplus cen plus modules and dry contacts / IR modules

The <where> field in OWN is, in most cases, the numeric address of a module, eventually followed by #4#<b> for modules on local buses (<b> is the local bus numerical id). Group addressing has the <where> field formatted as #<g>, where <g> is the group’s numerical id.

The table below defines the conversion rules between the OWN <where> format and HSYCO’s data points format.

OWN WHERE HSYCO Format Description
<n> <n> if <n> is a plain number, it is used as-is in HSYCO. Note that you should retain the leading zero when present. 01 is not equivalent to 1 in OWN, and HSYCO simply passes the where field back and forth with no changes
#<n> g<n> group addresses are represented in HSYCO as a lowercase g followed by the group numerical id, from 1 to 9
<n>#4# l.<n> a lowercase “l” and the local bus id are prefixed to the base address
#<n>#4# l.g<n> group addressing on local buses

The <what> field represents the value or action, and corresponds to the data point value in HSYCO. Each function supports a specific set of <what> values.

Gateway Module

ID Value R/W Description
connection online R connection established to the OWN gateway
offline R HSYCO can’t connect to the OWN gateway
frame OWN raw frame R a frame event is generated on incoming frames, based on the monitor setting (see below)
W send a raw OWN frame to the gateway
monitor none W the frame datapoint is not set with monitored frames
ignored W the frame datapoint is set with monitored frames that are not recognized and translated to specific events
all W the frame datapoint is set with any monitored frame
clock sync W set the gateway clock to HSYCO’s current time
read W read the gateway clock, and the delta with HSYCO’s time
<yyyy>-<mm>-
<hh>:<mm>:<ss>
R the gateway clock current time
clock.delta integer R the delta time in seconds between the gateway and HSYCO clocks. A positive number means that the gateway clock is ahead of HSYCO

Scenario Modules

ID Value R/W Description
scene.<module>
scene.<bus>.<module>
erase R all scenarios erased
W erase all scenarios
lock R module is locked (cannot erase or record scenarios)
W lock the scenario module
unlock R module is unlocked (can erase and record scenarios)
W unlock the scenario module
unavailable R the scenario module is busy
full R the scenario module memory is full
scene.<module>.<scene>
scene.<bus>.<module>.<scene>
[Note 2]
1 R scenario activated
W execute scenario
on W execute scenario
0 R scenario deactivated or cleared
W deactivate scenario
off W deactivate scenario
clear W clear scenario status, without sending the deactivate command to the module
record R recording
W start recording
end R end of recording
W stop recording
erase R the scenario has been erased
W erase scenario

Note 2 

<module> is the scenario module address, from 01 to 99 (retain the leading 0).

<bus> is the local bus ID, from 1 to 9, when the scenario module is on a local bus and not on the riser bus.

<scene> is the scenario number, from 1 to 32 (do not add a leading 0 for numbers less than 10).

Note  The unavailable event is generated when the scenario module cannot accept commands. This usually happens when the module is recording a scenario and at the same time is asked to execute another scenario.

Lighting: on/off Modules

ID Value R/W Description
light.<where> 1 R on status
W turn on
on W turn on
0 R off status
W turn off
off W turn off
lock W lock (disable)
unlock W unlock (enable)

When a module is locked, it doesn’t respond to any bus command except the unlock command.

Lighting: Dimmer Modules

ID Value R/W Description
light.<where> 1 W turn on at last level
on W turn on at last level
0 R off status
W turn off
off W turn off
<x>% R <x>% level
W set to <x>% level
<x> W set to <x>% level
<x>/<y> W set to <x>/<y> level
fault R load fault detected
lock W lock (disable)
unlock W unlock (enable)

Dimmers level can be set between 20% and 100%, in 10% steps.

Automation: Inter-locking Modules

ID Value R/W Description
autom.<where> unknown R the module’s status is unknown at this time
offup R off in up position
offdown R off in down position
stop
off
0
W stop
up R going up
W up/open command
down R going down
W down/close command
lock W lock (disable)
unlock W unlock (enable)

When the MyHome driver starts, and until an up or down command is sent to the module, HSYCO sets the data point value to unknown.

The offup and offdown status values do not represent the fully up/opened or down/closed position of the mechanical device controlled by the module, but just the fact that the module was commanding an up or down movement before being stopped.

Temperature Control: Central Unit

ID Value R/W Description
temp.control 0 R supervisor control of central unit disabled
1 R supervisor control of central unit enabled
temp.zone.off
[forced event]
1 R at least one zone is set to off mode
temp.zone.protection
[forced event]
1 R at least one zone is set to protection mode
temp.zone.manual
[forced event]
1 R at least one zone is set to manual mode
temp.fault
[forced event]
1 R generic fault
temp.battery.fault
[forced event]
1 R central unit battery fault
temp.mode winter R winter mode
W set winter mode
summer R summer mode
W set summer mode
temp.setpoint off R off mode
protection R temperature protection mode
<t> R when setpoint.mode=man, <t> is the temperature setpoint in °C/10

R when setpoint.mode=auto,

is the weekly program, from 1 to 3

R when setpoint.mode=scenario, is the scenario number, from 1 to 16
<d> R when setpoint.mode=away, <d> is the number of days, from 1 to 255

R when setpoint.mode=holiday,

is the weekly program to be set at the end of the day

temp.setpoint.mode off R central unit is off
protection R central unit is in temperature protection mode
man R central unit is in manual mode
auto R central unit is in automatic mode
scenario R central unit is in scenario mode
away R central unit is in away mode
holiday R central unit is in holiday mode
temp.command off W turn the system off
protection W set temperature protection mode
1 W set weekly program 1
2 W set weekly program 2
3 W set weekly program 3
<t> W set to manual mode, temperature <t> (in C/10), for example t=215 is 21.5 °C
up W set to manual mode, raising the setpoint by 0.5 °C
down W set to manual mode, lowering the setpoint by 0.5 °C
holiday W set holiday program (returns to weekly program 1 at midnight)
holiday.<n> W set holiday program (returns to weekly program <n> at midnight)
away.<yyyymmdd> W set away mode until the day passed as parameter, returning to weekly program 1 at midnight
away.<yyyymmdd> .<n> W set away mode until the day passed as parameter, returning to weekly program <n> at midnight
away.<d> W set away mode for <d> days, returning to weekly program 1 at midnight
away.+<d> W increases the number of away days by <d>, starting from 2 days
away.-<d> W decreases the number of away days by <d>
away.<d>.<n> W set away mode for <d> days, returning to weekly program <n> at midnight
scenario.<n> W set scenario mode <n>

Temperature Control: Zones

In the following table, <z> is the zone number, from 1 to 99.

ID Value R/W Description
temp.<z>.cooling.status 0 R zone actuator off in summer mode
1 R zone actuator on in summer mode
temp.<z>.heating.status 0 R zone actuator off in winter mode
1 R zone actuator on in winter mode
temp.<z>.fan off R fan is off
min R slow fan speed
med R medium fan speed
max R fast fan speed
temp.<z>.mode winter R winter mode
summer R summer mode
temp.<z>.setpoint 0 W turn zone off
off W turn zone off
auto W set zone to automatic mode
protection W set zone to temperature protection mode
up W set zone to manual mode, raising the setpoint by 0.5 °C
down W set zone to manual mode, lowering the setpoint by 0.5 °C
<t> R current temperature setpoint <t> (in °C/10), corrected with local offset
W set zone to manual mode, temperature <t> (in °C/10), for example t=215 is 21.5 °C
temp.<z>.setpoint.local -3 ... +3 R zone local offset is set to -3 ... +3
protection R zone locally set to protection mode
off R zone locally set to off
temp.<z>.setpoint.mode off R zone is off
protection R protection mode
man R manual mode
auto R automatic mode
temp.<z>.temp <t> R measured temperature <t> (in °C/10), for example t=183 is 18.3 °C
temp.<z> unlock W zone unlock

Burglar Alarm: Main Panel

ID Value R/W Description
security.active 0 R the burglar alarm panel is not active
1 R the burglar alarm panel is active (not necessarily armed)
security.alarm 0 R no alarm
1 R ongoing alarm condition
security.delay
[forced event]
end R end of arming delay (system now fully armed)
security.lowbattery 0 R battery ok
1 R low battery or battery fault condition
security.maintenance 0 R not in maintenance mode
1 R maintenance mode
security.nopower 0 R AC power ok
1 R fault condition on the AC power supply
security.programming 0 R not in programming mode
1 R programming mode
security.status off R system not armed
armed R system armed

Note Note that, because the MyHome burglar alarm panel cannot be directly controlled via OpenWebNet commands, there are no write-enabled data points for this system.

Burglar Alarm: Zones and Technical (aux)

In the following table, <z> is the zone number.

ID Value R/W Description
security.aux.<z>.alarm
[forced event]
0 R technical alarm reset
1 R technical alarm zone <z>
security.sensor.<z>.fault
[forced event]
1 R sensor <z> fault
security.zone.<z>.active 0 R zone <z> is not active
1 R zone <z> is active
security.zone.<z>.alarm 0 R zone <z> intrusion alarm reset
1 R zone <z> intrusion alarm
security.zone.<z>.panic 0 R zone <z> panic alarm reset
1 R zone <z> panic alarm
security.zone.<z>.tamper 0 R zone <z> tamper alarm reset
1 R zone <z> tamper alarm

Auxiliary Addresses

ID Value R/W Description
aux.<where> 1 R on status
W turn on
on W turn on
0 R off status
W turn off
off W turn off

CEN Modules

ID Value R/W Description
cen.<where>.<bt> on R button <bt> (00-31) pressed
W virtual press of button <bt>
off R button <bt> (00-31) released after short time (<= 0.5s)
W virtual short time release of button <bt>
offlong R button <bt> (00-31) released after long time (> 0.5s)
W virtual long time release of button <bt>
onrepeat R button <bt> (00-31) continues to be pressed (this event repeats every 0.5s)
W virtual long time pressure of button <bt>

CENPLUS Modules

ID Value R/W Description
cenplus.<where>.<bt>
(used for CEN PLUS command modules)
[Note 3]
on R button <bt> (00-31) pressed
W virtual press of button <bt>
off R button <bt> (00-31) released after short time (<= 0.5s)
W virtual short time release of button <bt>
offlong R button <bt> (00-31) released after long time (> 0.5s)
W virtual long time release of button<bt>
onrepeat R button <bt> (00-31) continues to be pressed (this event repeats every 0.5s)
W virtual long time pressure of button <bt>
cenplus.<where>
(used for DRY CONTACT and IR modules)
[Note 3]
on R on status
W turn on
off R off status
W turn off
request W request a status update

Note 3 
The <where> field used for command modules is prefixed by the “2” character in front of the address, while dry contact and IR modules have the <where> field prefixed with “3”.
WHERE Value Description
2 0-2047 CEN PLUS modules configured with Advanced Virtual Configuration
3 1-201 for automation dry contact interface (3477 and F428) <where> should be configured using the Virtual Configurator Software
3 [1-9][1-9] for alarm dry contact interface and IR (3480, F482, IR 4610, 4611, 4640) <where> is configured using <z> and <n> with physical configuration pins

F421 Load Control Unit

ID Value R/W Description
load.voltage refresh W requests the measured voltage
V R measured voltage, in Volts
load.current refresh W requests the measured current
I R measured current, in Amperes
load.power refresh W requests the measured power
P R measured power, in Watts
load.energy refresh W requests the measured energy
E R measured energy


Note  Note that reading a measured value to the F421 load control unit requires a relatively long time (up to about 4 seconds, based on our tests) and, during this time, the My Home gateway is unable to process any other request. This can result in temporary slowdown of the execution of other commands.

User Interface

Temperature Control Unit

UISET Actions

ID Attribute Set to
temp.status value summer/winter followed by the current status, for example: WINTER MAN 21.0 °C

USER Commands

Name Param Action
temp.command off turn the system off
temp.command protection set temperature protection mode
temp.command 1 set weekly program 1
temp.command 2 set weekly program 2
temp.command 3 set weekly program 3
temp.command <t> set to manual mode, temperature <t> (in °C/10), for example t=215 is 21.5 °C
temp.command up set to manual mode, raising the setpoint by 0.5 °C
temp.command down set to manual mode, lowering the setpoint by 0.5 °C
temp.command holiday set holiday program (returns to weekly program 1 at midnight)
temp.command holiday.<n> set holiday program (returns to weekly program <n> at midnight)
temp.command away.<yyyymmdd> set away mode until the day passed as parameter, returning to weekly program 1 at midnight
temp.command away.<yyyymmdd>.<n> set away mode until the day passed as parameter, returning to weekly program <n> at midnight
temp.command away.<d> set away mode for D days, returning to weekly program 1 at midnight
temp.command away.+<d> increases the number of away days by <d>, starting from 2 days
temp.command away.-<d> decreases the number of away days by <d>
temp.command away.<d>.<n> set away mode for <d> days, returning to weekly program <n> at midnight
temp.command scenario.<n> set scenario mode <n>

Temperature Zones

The standard TempMini object can be used to control each zone. The fan speed indicator is not visible if the zone is not configured for fan control.

Set the I/O server id in the Server ID field, and temp.<z> where <z> is the zone number from 1 to 99 in the Address field.

The Temp object is not supported for the MyHome system.

Zone unlock

If a zone has been locked in the off or protection modes using the local dial, you can create a User object to unlock that zone.

Name Param Action
temp.<z> unlock unlock zone <z>

Burglar Alarm Unit

UISET Actions

ID Attribute Set to
security.status value shows system status: ARMED, DISARMED or MAINTENANCE
security.alarm value shows ALARM if there is an ongoing alarm condition, empty otherwise
security.alarm.type value shows the alarm type, if not an intrusion alarm: TAMPER, PANIC or TECHNICAL
security.zones value shows zones 1-8 activation status, for example: 12-----8 means that only zones 1, 2 and 8 are active
security.log.<n> value log line <n> of the events log, where <n> is between 1 and 20. Line 1 lists the most recent event
security.status.label.maintenance visible true only when the burglar alarm panel is in maintenance mode
security.status.label.active visible true only when the burglar alarm panel is active (not necessarily armed)
security.lowbattery.label visible true only when there is a low battery or battery fault condition
security.acfault.label visible true only when there is a fault condition on the AC power supply
security.status.label.armed visible true only when the system is armed
security.alarm.label.intrusion visible true only when there is an ongoing intrusion alarm condition
security.alarm.label.tamper visible true only when there is an ongoing tamper alarm condition
security.alarm.label.panic visible true only when there is an ongoing panic alarm condition
security.alarm.label.aux visible true only when there is an ongoing technical alarm condition

USER Commands

Because the MyHome burglar alarm panel cannot be directly controlled via OpenWebNet commands, there are no standard control objects for this system.

Release Notes

3.8.0

  • added support for legacy OpenWebNet password authentication

3.7.0

  • added support for HMAC authentication (for MyHome Server 1 and other recent OpenWebNet gateways)

3.6.0

  • new "tempignorelocaloffset" option: when true, when sending zones absolute setpoint commands, the local offset is not corrected. Defaults to false

3.5.1

  • new "monitoronly" option. Set to true to disable the Command Dispatcher and only use the I/O Server to monitor the bus status. Defaults to false

3.4.0

  • bug-fix: when using the L4686SDK interface, added a small delay when sending commands, to ensure that feedback is properly received by the L4686SDK

3.3.0

  • added support of the L4686SDK interface module

3.2.2

  • clock read and sync are now based on local time

3.2.1

  • improved handling of connection errors

3.2.0

  • new clock datapoint to read the gateway’s internal clock and set it to HSYCO's time

3.0.0

  • initial release


MyHome and BTicino are registered trademarks of BTicino SpA.