Difference between revisions of "Contatto"

From HSYCO
Jump to navigation Jump to search
 
(47 intermediate revisions by the same user not shown)
Line 36: Line 36:
  
 
{{tip|A speed of 115200 bps is recommended to achieve good performance, particularly when the number of devices connected to the bus is large.}}
 
{{tip|A speed of 115200 bps is recommended to achieve good performance, particularly when the number of devices connected to the bus is large.}}
 +
 +
 +
=== High Availability ===
 +
*'''Shutdown when inactive''': defaults to false.
  
 
== HSYCO Configuration ==
 
== HSYCO Configuration ==
Line 117: Line 121:
 
|rowspan="2"|false
 
|rowspan="2"|false
 
|≥ 0 (MODANA address)
 
|≥ 0 (MODANA address)
|enables the automatic display in the GUI of the total real power measured by a DFANA module connected to this MCP. Note that, if you have more than one MCP gateway, you should enable this option for one gateway only
+
|enables the automatic display in the GUI of the total real power measured by a MODANA or MODANAM module connected to this MCP. Note that, if you have more than one MCP gateway, you should enable this option for one gateway only
 
|-
 
|-
 
|false
 
|false
Line 285: Line 289:
 
|-
 
|-
  
|MOD8I/A 8  
+
|MOD8I/A
|digital input module for NO contacts in modular housing
+
|8 digital input module for NO contacts in modular housing
 +
|-
 +
|MOD32I/A
 +
|32 digital input module for NO contacts in modular housing
 
|-
 
|-
|MOD32I/A
+
|MOD32IL
 
|32 digital input module for NO contacts in modular housing
 
|32 digital input module for NO contacts in modular housing
 
|-
 
|-
|MOD32IN
+
|MOD32IN
 
|32 digital input module for NO contacts in modular housing
 
|32 digital input module for NO contacts in modular housing
 
|-
 
|-
|MOD8INP2/A
+
|MOD8INP2/A
 
|8 digital input module for NO contacts
 
|8 digital input module for NO contacts
 
|-
 
|-
|MOD8INP2/C
+
|MOD8INP2/C
 
|8 digital input module for NC contacts
 
|8 digital input module for NC contacts
 
|-
 
|-
Line 378: Line 385:
 
|DMX gateway
 
|DMX gateway
 
|-
 
|-
|MODDALI
+
|MODDALI
 
|4-channel DALI gateway
 
|4-channel DALI gateway
 +
|-
 +
|MODDALI8
 +
|8-channel broadcast DALI gateway
 
|-
 
|-
 
|CLIMA2
 
|CLIMA2
 
|module for the regulation of the ambient temperature
 
|module for the regulation of the ambient temperature
 
|-
 
|-
|MODANA
+
|MODANA
|network analyzer module for Contatto bus
+
|network analyzer module
 +
|-
 +
|MODANAM
 +
|network analyzer module
 
|-
 
|-
 
|MODPQ5
 
|MODPQ5
Line 404: Line 417:
 
|MODCL
 
|MODCL
 
|temperature control module
 
|temperature control module
 +
|-
 +
|MOD4TP/I
 +
|8 digital input and 4 roller shutters or blinds with detection of travel time
 
|-
 
|-
 
|}
 
|}
Line 836: Line 852:
 
|R
 
|R
 
|input pin 8 on
 
|input pin 8 on
 +
|-
 +
 +
|}
 +
 +
----
 +
 +
=== MOD32IL ===
 +
 +
32 digital input module for NO contacts in modular housing.
 +
 +
It uses one addresses of the Contatto bus and four channels, one for each group of 8 inputs.
 +
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 +
|-
 +
 +
|rowspan="2"|i<address>.N
 +
N=1-32
 +
|0
 +
|R
 +
|input pin N off
 +
|-
 +
|1
 +
|R
 +
|input pin N on
 
|-
 
|-
  
Line 2,161: Line 2,205:
 
|-
 
|-
 
|offup
 
|offup
|RW
+
|R
 
|shutter off, up position
 
|shutter off, up position
 
|-
 
|-
 
|offdown
 
|offdown
|RW
+
|R
 
|shutter off, down position
 
|shutter off, down position
 
|-
 
|-
Line 2,187: Line 2,231:
 
|-
 
|-
 
|offup
 
|offup
|RW
+
|R
 
|shutter off, up position
 
|shutter off, up position
 
|-
 
|-
 
|offdown
 
|offdown
|RW
+
|R
 
|shutter off, down position
 
|shutter off, down position
 
|-
 
|-
Line 2,868: Line 2,912:
 
=== MODDALI ===
 
=== MODDALI ===
  
ModDALI module allows the management, through the Contatto bus, of 4 DALI lines upon it's possible to connect up to 32 devices for line (or channel). In this way it's possible to control and regulate up to 128 DALI ballasts (or other similar devices).
+
The ModDALI module allows the management of 4 DALI lines, with up to 32 devices for each line.
  
 
It uses 1 output address and, if enabled, 1 input address with the same value.
 
It uses 1 output address and, if enabled, 1 input address with the same value.
Line 2,879: Line 2,923:
 
|-
 
|-
  
|o<address>.<channel>
+
|o<address>.<line>
 
|refresh
 
|refresh
 
|RW
 
|RW
Line 2,885: Line 2,929:
 
|-
 
|-
  
|rowspan="2"|o<address>.<channel><br/>o<address>.<channel>.all<br/>o<address>.<channel>.0
+
|rowspan="2"|o<address>.<line><br/>o<address>.<line>.all<br/>o<address>.<line>.0
 
|off
 
|off
 
|RW
 
|RW
Line 2,895: Line 2,939:
 
|-
 
|-
  
|rowspan="2"|o<address>.<channel>.group.<DALI group>
+
|rowspan="2"|o<address>.<line>.group.<DALI group>
 
|off
 
|off
 
|RW
 
|RW
Line 2,905: Line 2,949:
 
|-
 
|-
  
|rowspan="4"|o<address>.<channel>.<DALI address>
+
|rowspan="4"|o<address>.<line>.<DALI address>
 
|off
 
|off
 
|RW
 
|RW
Line 2,923: Line 2,967:
 
|-
 
|-
  
|rowspan="2"|i<address>.<channel>.polling
+
|rowspan="2"|i<address>.<line>.polling
 
|off
 
|off
 
|RW
 
|RW
Line 2,933: Line 2,977:
 
|-
 
|-
  
|rowspan="2"|i<address>.<channel>.test
+
|rowspan="2"|i<address>.<line>.test
 
|0
 
|0
 
|RW
 
|RW
Line 2,943: Line 2,987:
 
|-
 
|-
  
|rowspan="4"|i<address>.<channel>.dali
+
|rowspan="4"|i<address>.<line>.dali
 
|nopower
 
|nopower
 
|RW
 
|RW
Line 2,961: Line 3,005:
 
|-
 
|-
  
|rowspan="2"|i<address>.<channel>.1
+
|rowspan="2"|i<address>.<line>.1
 
|fault
 
|fault
 
|RW
 
|RW
Line 2,973: Line 3,017:
 
|}
 
|}
  
The channel level can be set using additional formats besides the standard percent values:
+
The DALI device level can be set using additional formats besides the standard percent values:
 
*absolute positive integer number between 0 and 100
 
*absolute positive integer number between 0 and 100
 
*percent number, formatted as x%
 
*percent number, formatted as x%
Line 2,981: Line 3,025:
 
----
 
----
  
=== CLIMA2 ===
+
=== MODDALI8 ===
  
Module for the regulation of the ambient temperature.
+
The ModDALI8 module allows the management of 8 DALI lines, with up to 16 devices for each line (or channel).
  
It uses 1 input and 1 output address that are equal each one to the other, so only a base address is needed.
+
It uses 2 consecutive input addresses and 1 input address with the same base value.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 2,994: Line 3,038:
 
|-
 
|-
  
|rowspan="2"|i<address>
+
|rowspan="2"|o<address>.<line>
|on
+
|off
|R
+
|RW
|zone on
+
|off broadcast command
 
|-
 
|-
|off
+
|<level>
|R
+
|RW
|zone off
+
|level broadcast command
 
|-
 
|-
  
|rowspan="2"|i<address>.mode
+
|rowspan="2"|i<address>.<line>.polling
|summer
+
|off
|R
+
|RW
|summer mode
+
|polling disabled
 
|-
 
|-
|winter
+
|on
|R
+
|RW
|winter mode
+
|polling enabled
 
|-
 
|-
  
|rowspan="3"|i<address>.status
+
|rowspan="2"|i<address>.<line>.test
|off
+
|0
|R
+
|RW
|off status
+
|test button not pressed
 
|-
 
|-
|heating
+
|1
|R
+
|RW
|heating request
+
|test button pressed
 
|-
 
|-
|cooling
+
 
|R
+
|rowspan="4"|i<address>.<line>.dali
|cooling request
+
|fault
 +
|RW
 +
|lamp failure
 
|-
 
|-
 
+
|open
|rowspan="4"|i<address>.fan
+
|RW
|off
+
|no DALI device connected to this line
|R
 
|fan off
 
 
|-
 
|-
|min
+
|short
|R
+
|RW
|min speed
+
|DALI line short circuit
 
|-
 
|-
|med
+
|on
|R
+
|RW
|med speed
+
|DALI line working correctly
 
|-
 
|-
|max
+
 
|R
+
|}
|max speed
+
 
 +
<line> can be set from 1 to 8 to address a single line, or 0 to send commands to all DALI lines.
 +
 
 +
 
 +
The line level can be set using additional formats besides the standard percent values:
 +
*absolute positive integer number between 0 and 100
 +
*percent number, formatted as x%
 +
*fractional format, formatted as “x/y”, where 0 <= x <= y
 +
*values in the range 101÷255. Values and commands are described in the MODDALI8 Programming Handbook.
 +
 
 +
----
 +
 
 +
=== CLIMA2 ===
 +
 
 +
Module for the regulation of the ambient temperature.
 +
 
 +
It uses 1 input and 1 output address that are equal each one to the other, so only a base address is needed.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 
|-
 
|-
  
|rowspan="2"|i<address>.temp
+
|rowspan="2"|i<address>
|fault
+
|on
 
|R
 
|R
|NTC probe fault
+
|zone on
 
|-
 
|-
|<temp>
+
|off
 
|R
 
|R
|ambient temperature value, in C/10
+
|zone off
 
|-
 
|-
  
|i<address>.setpoint.temp
+
|rowspan="2"|i<address>.mode
|<temp>
+
|summer
 +
|R
 +
|summer mode
 +
|-
 +
|winter
 
|R
 
|R
|real setpoint value, in C/10
+
|winter mode
 
|-
 
|-
  
|i<address>.knob
+
|rowspan="3"|i<address>.status
|0 ... 1000
+
|off
 
|R
 
|R
|position of rotary knob
+
|off status
 
|-
 
|-
 
+
|heating
|rowspan="2"|o<address>.mode
+
|R
|summer
+
|heating request
|RW
 
|set summer
 
 
|-
 
|-
|winter
+
|cooling
|RW
+
|R
|set winter
+
|cooling request
 
|-
 
|-
  
|rowspan="2"|o<address>
+
|rowspan="4"|i<address>.fan
|on
 
|RW
 
|zone on
 
|-
 
 
|off
 
|off
|RW
+
|R
|zone off
+
|fan off
 
|-
 
|-
 
+
|min
|o<address>.setpoint.temp
+
|R
|0...400
+
|min speed
|RW
 
|set and read the value of central setpoint (temp in C/10)
 
 
|-
 
|-
 
+
|med
|o<address>.setpoint.delta.neg
+
|R
 +
|med speed
 +
|-
 +
|max
 +
|R
 +
|max speed
 +
|-
 +
 
 +
|rowspan="2"|i<address>.temp
 +
|fault
 +
|R
 +
|NTC probe fault
 +
|-
 +
|<temp>
 +
|R
 +
|ambient temperature value, in C/10
 +
|-
 +
 
 +
|i<address>.setpoint.temp
 
|<temp>
 
|<temp>
|RW
+
|R
|set and read the MAX negative delta
+
|real setpoint value, in C/10
 
|-
 
|-
  
|o<address>.setpoint.delta.pos
+
|i<address>.knob
|<temp>
+
|0 ... 1000
|RW
+
|R
|set and read the MAX positive delta
+
|position of rotary knob
 
|-
 
|-
  
|rowspan="4"|o<address>.led.1
+
|rowspan="2"|o<address>.mode
|red<br/>r
+
|summer
 
|RW
 
|RW
|LED 1 red
+
|set summer
 
|-
 
|-
|green<br/>g
+
|winter
 
|RW
 
|RW
|LED 1 green
+
|set winter
 
|-
 
|-
|yellow<br/>y
+
 
 +
|rowspan="2"|o<address>
 +
|on
 
|RW
 
|RW
|LED 1 yellow
+
|zone on
 +
|-
 +
|off
 +
|RW
 +
|zone off
 +
|-
 +
 
 +
|o<address>.setpoint.temp
 +
|0...400
 +
|RW
 +
|set and read the value of central setpoint (temp in C/10)
 +
|-
 +
 
 +
|o<address>.setpoint.delta.neg
 +
|<temp>
 +
|RW
 +
|set and read the MAX negative delta
 +
|-
 +
 
 +
|o<address>.setpoint.delta.pos
 +
|<temp>
 +
|RW
 +
|set and read the MAX positive delta
 +
|-
 +
 
 +
|rowspan="4"|o<address>.led.1
 +
|red<br/>r
 +
|RW
 +
|LED 1 red
 +
|-
 +
|green<br/>g
 +
|RW
 +
|LED 1 green
 +
|-
 +
|yellow<br/>y
 +
|RW
 +
|LED 1 yellow
 
|-
 
|-
 
|off
 
|off
Line 3,488: Line 3,606:
 
|-
 
|-
  
|rowspan="2"|i<address>.reset.energy
+
|rowspan="2"|o<address>.reset.energy
 
|1
 
|1
 
|RW
 
|RW
Line 3,498: Line 3,616:
 
|-
 
|-
  
|rowspan="2"|i<address>.reset.hours
+
|rowspan="2"|o<address>.reset.hours
 
|1
 
|1
 
|RW
 
|RW
Line 3,512: Line 3,630:
 
----
 
----
  
=== MODPQ5 ===
+
=== MODANAM ===
 +
 
 +
Network analyzer module for Contatto bus.
 +
 
 +
It uses, in dynamic mode, up to a maximum of 5 consecutive input addresses and, if enabled, 1 output address equal to the base address.
  
Q5 tags proximity reader and programmer module.
+
{{tip|The module must be configured with the same base address for input and output.}}
  
Uses 1 input address on the Contatto bus. Write operations are performed through direct writes to the module’s RAM.
+
For example:
 +
<pre>
 +
(I7, O7)
 +
</pre>
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 3,525: Line 3,650:
 
|-
 
|-
  
|i<address>.data
+
|i<address>.v12
|style="white-space:nowrap"|0 <br/> <tag data>
+
|[V]
 
|R
 
|R
|30 characters hexadecimal representation of the 15 bytes of tag data; “0” if the module is not seeing any tag
+
|chained voltage phase 1-2
 
|-
 
|-
  
|rowspan="2"|i<address>.data.write
+
|i<address>.v23
|0
+
|[V]
 
|R
 
|R
|the tag has been removed from the programmer after writing, or the module is not seeing any tag
+
|chained voltage phase 2-3
 
|-
 
|-
|1
+
 
 +
|i<address>.v31
 +
|[V]
 
|R
 
|R
|the tag write operation was successful
+
|chained voltage phase 3-1
 
|-
 
|-
  
|rowspan="2"|i<address>.reader.error
+
|i<address>.vtm
|0
+
|[V]
 
|R
 
|R
|reader/writer normal status
+
|average chained voltage
 
|-
 
|-
|1
+
 
 +
|i<address>.i1
 +
|[A]
 
|R
 
|R
|reader/writer module error (normally occurs when the reader is not connected to the MODPQ5 module)
+
|current phase 1
 
|-
 
|-
  
|rowspan="2"|i<address>.tag.error
+
|i<address>.i2
|0
+
|[A]
 
|R
 
|R
|the tag is valid
+
|current phase 2
 
|-
 
|-
|1
+
 
 +
|i<address>.i3
 +
|[A]
 
|R
 
|R
|the tag is not valid
+
|current phase 3
 
|-
 
|-
  
|rowspan="2"|i<address>.request.error
+
|i<address>.itm
|0
+
|[A]
 
|R
 
|R
|no request or handshake errors detected
+
|average current
 
|-
 
|-
|1
+
 
 +
|i<address>.ptot
 +
|[W]
 
|R
 
|R
|handshake error
+
|total active power
 
|-
 
|-
  
|rowspan="2"|i<address>.data.error
+
|i<address>.ptotk
|0
+
|[kW]
 
|R
 
|R
|tag data ok
+
|total active power
 
|-
 
|-
|1
+
 
 +
|i<address>.qtot
 +
|[W]
 
|R
 
|R
|tag data errors detected
+
|total reactive power
 
|-
 
|-
  
|rowspan="2"|i<address>.unknown.error
+
|i<address>.qtotk
|0
+
|[kW]
 
|R
 
|R
|no unknown errors
+
|total reactive power
 
|-
 
|-
|1
+
 
 +
|i<address>.pf
 +
|[pf]
 
|R
 
|R
|unknown error detected
+
|total power factor
 
|-
 
|-
  
|rowspan="2"|i<address>.write
+
|i<address>.frequency
|<tag data>
+
|[Hz]
 
|R
 
|R
|tag data write successful
+
|frequency
 
|-
 
|-
|error
+
 
 +
|i<address>.v1n
 +
|[V]
 
|R
 
|R
|tag data write error
+
|voltage phase 1
 
|-
 
|-
  
|o<address>.write
+
|i<address>.v2n
|<tag data>
+
|[V]
|W
+
|R
|30 characters hexadecimal representation of the 15 bytes data to be written on the tag
+
|voltage phase 2
 
|-
 
|-
|}
 
  
----
+
|i<address>.v3n
 
+
|[V]
=== MODHT ===
+
|R
 
+
|voltage phase 3
MODHT is the hotel room controller module.
 
 
 
It uses 1 input and 1 output address.  
 
 
 
Tags configuration data are written to the module’s EEPROM (persistent internal memory).
 
 
 
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
  
|rowspan="2"|i<address>.door
+
|i<address>.p1
|0
+
|[W]
 
|R
 
|R
|door closed
+
|active power phase 1
 
|-
 
|-
|1
+
 
 +
|i<address>.p1k
 +
|[kW]
 
|R
 
|R
|door open
+
|active power phase 1
 
|-
 
|-
  
|rowspan="2"|i<address>.window
+
|i<address>.p2
|0
+
|[W]
 
|R
 
|R
|window closed
+
|active power phase 2
 
|-
 
|-
|1
+
 
 +
|i<address>.p2k
 +
|[kW]
 
|R
 
|R
|window open
+
|active power phase 2
 
|-
 
|-
  
|rowspan="2"|i<address>.panic
+
|i<address>.p3
|0
+
|[W]
 
|R
 
|R
|panic request not active
+
|active power phase 3
 
|-
 
|-
|1
+
 
 +
|i<address>.p3k
 +
|[kW]
 
|R
 
|R
|panic request
+
|active power phase 3
 
|-
 
|-
  
|rowspan="2"|i<address>.busy
+
|i<address>.q1
|0
+
|[W]
 
|R
 
|R
|room is free
+
|reactive power phase 1
 
|-
 
|-
|1
+
 
 +
|i<address>.q1k
 +
|[kW]
 
|R
 
|R
|room is occupied
+
|reactive power phase 1
 
|-
 
|-
  
|rowspan="2"|i<address>.1
+
|i<address>.q2
|0
+
|[W]
 
|R
 
|R
|input pin 1 off
+
|reactive power phase 2
 
|-
 
|-
|1
+
 
 +
|i<address>.q2k
 +
|[kW]
 
|R
 
|R
|input pin 1 on
+
|reactive power phase 2
 
|-
 
|-
  
|rowspan="2"|i<address>.2
+
|i<address>.q3
|0
+
|[W]
 
|R
 
|R
|input pin 2 off
+
|reactive power phase 3
 
|-
 
|-
|1
+
 
 +
|i<address>.q3k
 +
|[kW]
 
|R
 
|R
|input pin 2 on
+
|reactive power phase 3
 
|-
 
|-
  
|rowspan="2"|i<address>.ev
+
|i<address>.pf1
|0
+
|[pf]
 
|R
 
|R
|EV output off
+
|power factor phase 1
 
|-
 
|-
|1
+
 
 +
|i<address>.pf2
 +
|[pf]
 
|R
 
|R
|EV output on
+
|power factor phase 2
 
|-
 
|-
  
|rowspan="2"|i<address>.aux
+
|i<address>.pf3
|0
+
|[pf]
 
|R
 
|R
|AUX output off
+
|power factor phase 3
 
|-
 
|-
|1
+
 
 +
|i<address>.s1
 +
|[VA]
 
|R
 
|R
|AUX output on
+
|apparent power phase 1
 
|-
 
|-
  
|rowspan="2"|i<address>.dnd
+
|i<address>.s1k
|0
+
|[kVA]
 
|R
 
|R
|do not disturb not active
+
|apparent power phase 1
 
|-
 
|-
|1
+
 
 +
|i<address>.s2
 +
|[VA]
 
|R
 
|R
|do not disturb
+
|apparent power phase 2
 
|-
 
|-
  
|rowspan="2"|i<address>.service
+
|i<address>.s2k
|0
+
|[kVA]
 
|R
 
|R
|room service request not active
+
|apparent power phase 2
 
|-
 
|-
|1
+
 
 +
|i<address>.s3
 +
|[VA]
 
|R
 
|R
|room service request
+
|apparent power phase 3
 
|-
 
|-
  
|rowspan="2"|i<address>.booked
+
|i<address>.s3k
|0
+
|[kVA]
 
|R
 
|R
|room is not booked
+
|apparent power phase 3
 
|-
 
|-
|1
+
 
 +
|i<address>.stot
 +
|[VA]
 
|R
 
|R
|room is booked
+
|total apparent power
 
|-
 
|-
  
|rowspan="2"|i<address>.mode
+
|i<address>.hours
|summer
+
|[hours]
 
|R
 
|R
|summer mode
+
|hour-meter
 
|-
 
|-
|winter
+
 
 +
|i<address>.temperature
 +
|[°C]
 
|R
 
|R
|winter mode
+
|cabinet temperature
 
|-
 
|-
  
|rowspan="5"|i<address>.fan
+
|i<address>.energy.active
|off
+
|[KWh]
 
|R
 
|R
|fan set to off
+
|positive active energy
 
|-
 
|-
|auto
+
 
 +
|i<address>.energy.activeneg
 +
|[KWh]
 
|R
 
|R
|fan speed set to auto
+
|negative active energy
 
|-
 
|-
|min
+
 
 +
|i<address>.energy.reactive
 +
|[KVARh]
 
|R
 
|R
|fan speed set to minimum
+
|positive reactive energy
 
|-
 
|-
|med
+
 
 +
|i<address>.energy.reactiveneg
 +
|[KVARh]
 
|R
 
|R
|fan speed set to medium
+
|negative reactive energy
 
|-
 
|-
|max
+
 
 +
|rowspan="2"|o<address>.reset.energy
 +
|1
 +
|RW
 +
|reset energies
 +
|-
 +
|0
 +
|RW
 +
| ---
 +
|-
 +
 
 +
|rowspan="2"|o<address>.reset.hours
 +
|1
 +
|RW
 +
|reset hour-meter
 +
|-
 +
|0
 +
|RW
 +
| ---
 +
|-
 +
 
 +
|}
 +
 
 +
----
 +
 
 +
=== MODPQ5 ===
 +
 
 +
Q5 tags proximity reader and programmer module.
 +
 
 +
Uses 1 input address on the Contatto bus. Write operations are performed through direct writes to the module’s RAM.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 +
|-
 +
 
 +
|i<address>.data
 +
|style="white-space:nowrap"|0 <br/> <tag data>
 
|R
 
|R
|fan speed set to max
+
|30 characters hexadecimal representation of the 15 bytes of tag data; “0” if the module is not seeing any tag
 
|-
 
|-
  
|rowspan="2"|i<address>.fan.status
+
|rowspan="2"|i<address>.data.write
 
|0  
 
|0  
 
|R
 
|R
|fan is off
+
|the tag has been removed from the programmer after writing, or the module is not seeing any tag
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|fan is on (cooling or heating)
+
|the tag write operation was successful
 
|-
 
|-
  
|i<address>.temp
+
|rowspan="2"|i<address>.reader.error
|<temp>
+
|0
 +
|R
 +
|reader/writer normal status
 +
|-
 +
|1
 
|R
 
|R
|ambient temperature value (in C/10)
+
|reader/writer module error (normally occurs when the reader is not connected to the MODPQ5 module)
 
|-
 
|-
  
|i<address>.setpoint.temp
+
|rowspan="2"|i<address>.tag.error
|<temp>
+
|0
 
|R
 
|R
|setpoint value (in C/10)
+
|the tag is valid
 
|-
 
|-
 
+
|1
|i<address>.tag.door
 
|1...5
 
 
|R
 
|R
|type of tag that is opening the door (1 to 4 are service tags; 5 is a customer tag). After 5 seconds the value is reset to 0
+
|the tag is not valid
 
|-
 
|-
  
|rowspan="2"|i<address>.tag.room
+
|rowspan="2"|i<address>.request.error
 
|0
 
|0
 
|R
 
|R
|no tag present in room’s reader
+
|no request or handshake errors detected
 
|-
 
|-
|1...5
+
|1
 
|R
 
|R
|type of tag inserted in the room’s reader (1 to 4 are service tags; 5 is a customer tag)
+
|handshake error
 
|-
 
|-
  
|i<address>.tag.<n>
+
|rowspan="2"|i<address>.data.error
|<tag data>
 
|R
 
|24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5) stored in module’s EEPROM
 
|-
 
 
 
|rowspan="2"|i<address>.pcam.error
 
 
|0
 
|0
 
|R
 
|R
|PCAM module ok
+
|tag data ok
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|PCAM module error
+
|tag data errors detected
 
|-
 
|-
  
|rowspan="2"|i<address>.tpr.error
+
|rowspan="2"|i<address>.unknown.error
 
|0
 
|0
 
|R
 
|R
|TPR/H module ok
+
|no unknown errors
 
|-
 
|-
 
|1
 
|1
 
|R
 
|R
|TPR/H module error
+
|unknown error detected
 
|-
 
|-
  
|i<address>.mask
+
|rowspan="2"|i<address>.write
|style="white-space:nowrap"|<mask data>
+
|<tag data>
 
|R
 
|R
|24 characters hexadecimal representation of the 12 bytes tag mask stored in module’s EEPROM
+
|tag data write successful
 
|-
 
|-
 
+
|error
|i<address>.data.door
 
|0<br/><tag data>
 
 
|R
 
|R
|30 characters hexadecimal representation of the 15 bytes of tag data being read from the door reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
+
|tag data write error
 
|-
 
|-
  
|i<address>.data.room
+
|o<address>.write
|0<br/><tag data>
+
|<tag data>
|R
+
|W
|30 characters hexadecimal representation of the 15 bytes of tag data being read from the room reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
+
|30 characters hexadecimal representation of the 15 bytes data to be written on the tag
 
|-
 
|-
 +
|}
 +
 +
----
 +
 +
=== MODHT ===
 +
 +
MODHT is the hotel room controller module.
 +
 +
It uses 1 input and 1 output address.
 +
 +
Tags configuration data are written to the module’s EEPROM (persistent internal memory).
  
|i<address>.setpoint.summer.<n> <br/> i<address>.setpoint.winter.<n>
+
{| class="wikitable"
|<temp>
+
!ID
|R
+
!Value
|winter/summer setpoint <n> (1...3) current value (in C/10)
+
!R/W
 +
!Description
 
|-
 
|-
  
|i<address>.setpoint.delta.summer.low <br/> i<address>.setpoint.delta.summer.high <br/> i<address>.setpoint.delta.winter.low <br/>  i<address>.setpoint.delta.winter.high
+
|rowspan="2"|i<address>.door
|style="white-space:nowrap"|<temp delta limit> <br/> 1...9
+
|0
 
|R
 
|R
|the current temperature setpoint low/high limits for winter and summer modes (in C)
+
|door closed
 
|-
 
|-
 
+
|1
|rowspan="2"|o<address>.tag.<n>
 
|<tag data>
 
 
|R
 
|R
|tag data write successful
+
|door open
|-
 
|error
 
|R
 
|tag data write error
 
 
|-
 
|-
  
|rowspan="2"|o<address>.mask
+
|rowspan="2"|i<address>.window
|<mask data>
+
|0
 
|R
 
|R
|mask data write successful
+
|window closed
 
|-
 
|-
|error
+
|1
 
|R
 
|R
|mask data write error
+
|window open
 
|-
 
|-
  
|rowspan="2"|o<address>.setpoint.summer.<n> <br/> o<address>.setpoint.winter.<n>
+
|rowspan="2"|i<address>.panic
|<temp>
+
|0
 
|R
 
|R
|winter/summer setpoint N (1-3) write successful (in C/10)
+
|panic request not active
 
|-
 
|-
|error
+
|1
 
|R
 
|R
|setpoint write error
+
|panic request
 
|-
 
|-
  
|rowspan="2"|o<address>.setpoint.delta.summer.low <br/> o<address>.setpoint.delta.summer.high <br/> o<address>.setpoint.delta.winter.low <br/>  o<address>.setpoint.delta.winter.high
+
|rowspan="2"|i<address>.busy
|<temp delta limit> <br/> 1...9
+
|0
 
|R
 
|R
|setpoint min/max limit for winter/summer write successful (in C)
+
|room is free
 
|-
 
|-
|error
+
|1
 
|R
 
|R
|setpoint limit write error
+
|room is occupied
 
|-
 
|-
  
|rowspan="2"|o<address>.ev.enable
+
|rowspan="2"|i<address>.1
|0
+
|0  
|W
+
|R
|EV output disabled
+
|input pin 1 off
 
|-
 
|-
 
|1
 
|1
|W
+
|R
|EV output enabled
+
|input pin 1 on
 
|-
 
|-
  
|rowspan="2"|o<address>.aux.enable
+
|rowspan="2"|i<address>.2
|0
+
|0  
|W
+
|R
|AUX output disabled
+
|input pin 2 off
 
|-
 
|-
 
|1
 
|1
|W
+
|R
|AUX output enabled
+
|input pin 2 on
 
|-
 
|-
  
|o<address>.panic.reset
+
|rowspan="2"|i<address>.ev
|1
 
|W
 
|panic request reset
 
|-
 
 
 
|rowspan="2"|o<address>.busy
 
 
|0
 
|0
|W
+
|R
|set room status to free
 
|-
 
|1
 
|W
 
|set room status to occupied
 
|-
 
 
 
|rowspan="2"|o<address>.ev
 
|0
 
|W
 
 
|EV output off
 
|EV output off
 
|-
 
|-
 
|1
 
|1
|W
+
|R
 
|EV output on
 
|EV output on
 
|-
 
|-
  
|rowspan="2"|o<address>.aux
+
|rowspan="2"|i<address>.aux
 
|0
 
|0
|W
+
|R
 
|AUX output off
 
|AUX output off
 
|-
 
|-
 
|1
 
|1
|W
+
|R
 
|AUX output on
 
|AUX output on
 
|-
 
|-
  
|o<address>.dnd.reset
+
|rowspan="2"|i<address>.dnd
 +
|0
 +
|R
 +
|do not disturb not active
 +
|-
 
|1
 
|1
|W
+
|R
|do not disturb reset
+
|do not disturb
 
|-
 
|-
  
|o<address>.service.reset
+
|rowspan="2"|i<address>.service
 +
|0
 +
|R
 +
|room service request not active
 +
|-
 
|1
 
|1
|W
+
|R
|do not disturb reset
+
|room service request
 
|-
 
|-
  
|rowspan="2"|o<address>.booked
+
|rowspan="2"|i<address>.booked
|0
+
|0  
|W
+
|R
|set room as not booked
+
|room is not booked
 
|-
 
|-
 
|1
 
|1
|W
+
|R
|set room as booked
+
|room is booked
 
|-
 
|-
  
|rowspan="2"|o<address>.mode
+
|rowspan="2"|i<address>.mode
|summer
+
|summer  
|W
+
|R
|set room to summer mode
+
|summer mode
 
|-
 
|-
 
|winter
 
|winter
|W
+
|R
|set room to winter mode
+
|winter mode
 
|-
 
|-
  
|rowspan="2"|o<address>.fan
+
|rowspan="5"|i<address>.fan
 
|off
 
|off
|W
+
|R
|set fan off
+
|fan set to off
 
|-
 
|-
 
|auto
 
|auto
|W
+
|R
|set fan to auto mode
+
|fan speed set to auto
 
|-
 
|-
 
+
|min
|rowspan="2"|o<address>.comfort
+
|R
|0
+
|fan speed set to minimum
|W
+
|-
|force comfort set-point off
+
|med
 +
|R
 +
|fan speed set to medium
 
|-
 
|-
|1
+
|max
|W
+
|R
|force comfort set-point on
+
|fan speed set to max
 
|-
 
|-
  
|rowspan="2"|o<address>.3
+
|rowspan="2"|i<address>.fan.status
|0
+
|0  
|W
+
|R
|output pin 3 off
+
|fan is off
 
|-
 
|-
 
|1
 
|1
|W
+
|R
| output pin 3 on
+
|fan is on (cooling or heating)
 
|-
 
|-
  
 +
|i<address>.temp
 +
|<temp>
 +
|R
 +
|ambient temperature value (in C/10)
 +
|-
  
|rowspan="2"|o<address>.fan.heating.min
+
|i<address>.setpoint.temp
|0
+
|<temp>
|W
+
|R
|reset heating speed limit
+
|setpoint value (in C/10)
 
|-
 
|-
|1
+
 
|W
+
|i<address>.tag.door
|limit heating speed to min
+
|1...5
 +
|R
 +
|type of tag that is opening the door (1 to 4 are service tags; 5 is a customer tag). After 5 seconds the value is reset to 0
 
|-
 
|-
  
|rowspan="2"|o<address>.fan.cooling.min
+
|rowspan="2"|i<address>.tag.room
 
|0
 
|0
|W
+
|R
|reset cooling speed limit
+
|no tag present in room’s reader
 
|-
 
|-
|1
+
|1...5
|W
+
|R
|limit cooling speed to min
+
|type of tag inserted in the room’s reader (1 to 4 are service tags; 5 is a customer tag)
 
|-
 
|-
  
|rowspan="2"|o<address>.tag.<n>
+
|i<address>.tag.<n>
|read
 
|W
 
|read the 12 bytes stored in module’s EEPROM for service N tags (<n> from 1 to 5)
 
|-
 
 
|<tag data>
 
|<tag data>
|W
+
|R
|24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5), to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
+
|24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5) stored in module’s EEPROM
 
|-
 
|-
  
|rowspan="2"|o<address>.mask
+
|rowspan="2"|i<address>.pcam.error
|read
+
|0
|W
+
|R
|read the 12 bytes mask stored in module’s EEPROM
+
|PCAM module ok
 
|-
 
|-
|<mask data>
+
|1
|W
+
|R
|24 characters hexadecimal representation of the 12 bytes tag mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
+
|PCAM module error
 
|-
 
|-
  
|rowspan="2"|o<address>.setpoint.summer.<n> <br/> o<address>.setpoint.winter.<n>
+
|rowspan="2"|i<address>.tpr.error
|read
+
|0
|W
+
|R
|read winter/summer setpoint <n> (1-3)
+
|TPR/H module ok
 
|-
 
|-
|<temp>
+
|1
|W
+
|R
|set winter/summer setpoint <n> (1-3)
+
|TPR/H module error
 
|-
 
|-
  
|o<address>.setpoint.delta
+
|i<address>.mask
|read
+
|style="white-space:nowrap"|<mask data>
|W
+
|R
|read winter and summer, low and high setpoint limits
+
|24 characters hexadecimal representation of the 12 bytes tag mask stored in module’s EEPROM
 
|-
 
|-
  
|o<address>.setpoint.delta.summer.low <br/> o<address>.setpoint.delta.summer.high <br/> o<address>.setpoint.delta.winter.low <br/> o<address>.setpoint.delta.winter.high
+
|i<address>.data.door
|<temp delta limit>
+
|0<br/><tag data>
|W
+
|R
|set winter/summer, low/high setpoint limit (in C)
+
|30 characters hexadecimal representation of the 15 bytes of tag data being read from the door reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
 
|-
 
|-
  
|}
+
|i<address>.data.room
 +
|0<br/><tag data>
 +
|R
 +
|30 characters hexadecimal representation of the 15 bytes of tag data being read from the room reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
 +
|-
  
----
+
|i<address>.setpoint.summer.<n> <br/> i<address>.setpoint.winter.<n>
 +
|<temp>
 +
|R
 +
|winter/summer setpoint <n> (1...3) current value (in C/10)
 +
|-
  
=== MODCA ===
+
|i<address>.setpoint.delta.summer.low <br/> i<address>.setpoint.delta.summer.high <br/> i<address>.setpoint.delta.winter.low <br/>  i<address>.setpoint.delta.winter.high
 +
|style="white-space:nowrap"|<temp delta limit> <br/> 1...9
 +
|R
 +
|the current temperature setpoint low/high limits for winter and summer modes (in C)
 +
|-
  
MODCA is the access control module.  
+
|rowspan="2"|o<address>.tag.<n>
 +
|<tag data>
 +
|R
 +
|tag data write successful
 +
|-
 +
|error
 +
|R
 +
|tag data write error
 +
|-
  
It uses 1 input and 1 output address.
+
|rowspan="2"|o<address>.mask
 
+
|<mask data>
Tags configuration data are written to the module’s EEPROM (persistent external memory).
 
 
 
Site codes and the tags mask are written to the internal EEPROM.
 
 
 
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
|-
 
 
 
|rowspan="2"|i<address>.1
 
|0
 
 
|R
 
|R
|input pin 1 off
+
|mask data write successful
 
|-
 
|-
|1
+
|error
 
|R
 
|R
|input pin 1 on
+
|mask data write error
 
|-
 
|-
  
|rowspan="2"|i<address>.2
+
|rowspan="2"|o<address>.setpoint.summer.<n> <br/> o<address>.setpoint.winter.<n>
|0
+
|<temp>
 
|R
 
|R
|input pin 2 off
+
|winter/summer setpoint N (1-3) write successful (in C/10)
 
|-
 
|-
|1
+
|error
 
|R
 
|R
|input pin 2 on
+
|setpoint write error
 
|-
 
|-
  
|rowspan="2"|i<address>.blocked
+
|rowspan="2"|o<address>.setpoint.delta.summer.low <br/> o<address>.setpoint.delta.summer.high <br/> o<address>.setpoint.delta.winter.low <br/>  o<address>.setpoint.delta.winter.high
|0
+
|<temp delta limit> <br/> 1...9
 
|R
 
|R
|access control enabled
+
|setpoint min/max limit for winter/summer write successful (in C)
 
|-
 
|-
|1
+
|error
 
|R
 
|R
|access blocked
+
|setpoint limit write error
 
|-
 
|-
  
|rowspan="2"|i<address>.tpr.error
+
|rowspan="2"|o<address>.ev.enable
|0  
+
|0
|R
+
|W
|TPR module ok
+
|EV output disabled
 
|-
 
|-
 
|1
 
|1
|R
+
|W
|TPR module error
+
|EV output enabled
 
|-
 
|-
  
|rowspan="2"|i<address>.access.granted.1
+
|rowspan="2"|o<address>.aux.enable
|0  
+
|0
|R
+
|W
|no tag present at antenna 1
+
|AUX output disabled
 +
|-
 +
|1
 +
|W
 +
|AUX output enabled
 
|-
 
|-
 +
 +
|o<address>.panic.reset
 
|1
 
|1
|R
+
|W
|access granted to tag at antenna 1
+
|panic request reset
 
|-
 
|-
  
|rowspan="2"|i<address>.access.granted.2
+
|rowspan="2"|o<address>.busy
|0  
+
|0
|R
+
|W
|no tag present at antenna 2
+
|set room status to free
 
|-
 
|-
 
|1
 
|1
|R
+
|W
|access granted to tag at antenna 2
+
|set room status to occupied
 
|-
 
|-
  
|rowspan="8"|i<address>.access.denied
+
|rowspan="2"|o<address>.ev
|0  
+
|0
|R
+
|W
|access denied flags reset
+
|EV output off
|-
 
|site
 
|R
 
|access denied due to site code error
 
 
|-
 
|-
|code
+
|1
|R
+
|W
|access denied due to user code error
+
|EV output on
 
|-
 
|-
|total.limit
+
 
|R
+
|rowspan="2"|o<address>.aux
|access denied due to exceeded total number of access grants
+
|0
 +
|W
 +
|AUX output off
 
|-
 
|-
|daily.limit
+
|1
|R
+
|W
|access denied due to exceeded daily number of access grants
+
|AUX output on
|-
 
|time
 
|R
 
|access denied due to time range violation
 
|-
 
|day
 
|R
 
|access denied due to weekday violation
 
|-
 
|expired
 
|R
 
|access denied due expired tag
 
 
|-
 
|-
  
|i<address>.denied.code
+
|o<address>.dnd.reset
|<tag code>
+
|1
|R
+
|W
|the tag code (decimal value of selected two bytes of the tag data) that was denied access
+
|do not disturb reset
 
|-
 
|-
  
|i<address>.granted.1.code
+
|o<address>.service.reset
|<tag code>
+
|1
|R
+
|W
|the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 1
+
|do not disturb reset
 
|-
 
|-
  
|i<address>.granted.2.code
+
|rowspan="2"|o<address>.booked
|<tag code>
+
|0
|R
+
|W
|the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 2
+
|set room as not booked
 +
|-
 +
|1
 +
|W
 +
|set room as booked
 
|-
 
|-
  
|i<address>.site.<n>
+
|rowspan="2"|o<address>.mode
|style="white-space:nowrap"|<site data>
+
|summer
|R
+
|W
|16 characters hexadecimal representation of the 8 bytes data representing the Nth site code (N from 1 to 4) stored in module’s EEPROM
+
|set room to summer mode
 
|-
 
|-
 
+
|winter
|i<address>.mask
+
|W
|style="white-space:nowrap"|<mask data>
+
|set room to winter mode
|R
 
|16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
 
 
|-
 
|-
  
|i<address>.mask
+
|rowspan="2"|o<address>.fan
|<mask data>
+
|off
|R
+
|W
|16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
+
|set fan off
 
|-
 
|-
 
+
|auto
|i<address>.user.<n>
+
|W
|<user data>
+
|set fan to auto mode
|R
 
|32 characters hexadecimal representation of the 16 bytes data for user <n> (N from 1 to 2000) stored in module’s EEPROM
 
 
|-
 
|-
  
|rowspan="2"|o<address>.site.<n>
+
|rowspan="2"|o<address>.comfort
|<site data>
+
|0
|R
+
|W
|site data write successful
+
|force comfort set-point off
 
|-
 
|-
|error
+
|1
|R
+
|W
|site data write error
+
|force comfort set-point on
 
|-
 
|-
  
|rowspan="2"|o<address>.mask
+
|rowspan="2"|o<address>.3
|<mask data>
 
|R
 
|mask data write successful
 
|-
 
|error
 
|R
 
|mask data write error
 
|-
 
 
 
|rowspan="2"|o<address>.user.<n>
 
|<user data>
 
|R
 
|user data write successful
 
|-
 
|error
 
|R
 
|user data write error
 
|-
 
 
 
|rowspan="2"|o<address>.relay
 
 
|0
 
|0
 
|W
 
|W
|relay output off
+
|output pin 3 off
 
|-
 
|-
 
|1
 
|1
 
|W
 
|W
|relay output pulse on, with pulse length according to the MODCA configuration (with firmware versions before 1.3 this data point remains at 1 and should be reset to 0 with an explicit command; with firmware 1.3 the data point value follows the relay state, and is automatically reset to 0 at the end of the pulse period)
+
| output pin 3 on
 
|-
 
|-
  
|rowspan="2"|o<address>.relay.forced
+
 
 +
|rowspan="2"|o<address>.fan.heating.min
 
|0
 
|0
 
|W
 
|W
|forced relay mode not set (default behaviour)
+
|reset heating speed limit
 
|-
 
|-
 
|1
 
|1
 
|W
 
|W
|forced relay mode set: the relay remains closed until the relay.forced command is reset (available with MODCA firmware version 2.0 or later)
+
|limit heating speed to min
 
|-
 
|-
  
|rowspan="2"|o<address>.block
+
|rowspan="2"|o<address>.fan.cooling.min
 
|0
 
|0
 
|W
 
|W
|enable access control
+
|reset cooling speed limit
 
|-
 
|-
 
|1
 
|1
 
|W
 
|W
|block access control
+
|limit cooling speed to min
 
|-
 
|-
  
|rowspan="2"|o<address>.access.granted.code
+
|rowspan="2"|o<address>.tag.<n>
|0
+
|read
 
|W
 
|W
|reset
+
|read the 12 bytes stored in module’s EEPROM for service N tags (<n> from 1 to 5)
 
|-
 
|-
|1
+
|<tag data>
 
|W
 
|W
|allow access even when site code is not valid
+
|24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5), to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
 
|-
 
|-
  
|rowspan="2"|o<address>.access.granted.total.limit
+
|rowspan="2"|o<address>.mask
|0
+
|read
 
|W
 
|W
|reset
+
|read the 12 bytes mask stored in module’s EEPROM
 
|-
 
|-
|1
+
|<mask data>
 
|W
 
|W
|allow access even when the total limit of access grants has been exceeded
+
|24 characters hexadecimal representation of the 12 bytes tag mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
 
|-
 
|-
  
|rowspan="2"|o<address>.access.granted.daily.limit
+
|rowspan="2"|o<address>.setpoint.summer.<n> <br/> o<address>.setpoint.winter.<n>
|0
+
|read
 
|W
 
|W
|reset
+
|read winter/summer setpoint <n> (1-3)
 
|-
 
|-
|1
+
|<temp>
 
|W
 
|W
|allow access even when the daily limit of access grants has been exceeded
+
|set winter/summer setpoint <n> (1-3)
 
|-
 
|-
  
|rowspan="2"|o<address>.access.granted.time
+
|o<address>.setpoint.delta
|0
+
|read
 
|W
 
|W
|reset
+
|read winter and summer, low and high setpoint limits
 
|-
 
|-
|1
+
 
 +
|o<address>.setpoint.delta.summer.low <br/> o<address>.setpoint.delta.summer.high <br/> o<address>.setpoint.delta.winter.low <br/> o<address>.setpoint.delta.winter.high
 +
|<temp delta limit>
 
|W
 
|W
|allow access even outside of the allowed timeframe
+
|set winter/summer, low/high setpoint limit (in C)
 
|-
 
|-
  
|rowspan="2"|o<address>.access.granted.day
+
|}
|0
+
 
|W
+
----
|reset
+
 
 +
=== MODCA ===
 +
 
 +
MODCA is the access control module.
 +
 
 +
It uses 1 input and 1 output address.
 +
 
 +
Tags configuration data are written to the module’s EEPROM (persistent external memory).
 +
 
 +
Site codes and the tags mask are written to the internal EEPROM.
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 +
|-
 +
 
 +
|rowspan="2"|i<address>.1
 +
|0  
 +
|R
 +
|input pin 1 off
 
|-
 
|-
 
|1
 
|1
|W
+
|R
|allow access even outside of the allowed weekdays
+
|input pin 1 on
 
|-
 
|-
  
|rowspan="2"|o<address>.access.granted.expired
+
|rowspan="2"|i<address>.2
|0
+
|0  
|W
+
|R
|reset
+
|input pin 2 off
 
|-
 
|-
 
|1
 
|1
|W
+
|R
|allow access even when the tag is expired
+
|input pin 2 on
 
|-
 
|-
  
|rowspan="2"|o<address>.site.<n>
+
|rowspan="2"|i<address>.blocked
|read
+
|0
|W
+
|R
|read the 8 bytes stored in module’s EEPROM for site N code (<n> from 1 to 4)
+
|access control enabled
 
|-
 
|-
|<site data>
+
|1
|W
+
|R
|16 characters hexadecimal representation of the 8 bytes data of site N code (N from 1 to 4), to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
+
|access blocked
 
|-
 
|-
  
|rowspan="2"|o<address>.mask
+
|rowspan="2"|i<address>.tpr.error
|read
+
|0
|W
+
|R
|read the 8 bytes mask stored in module’s EEPROM
+
|TPR module ok
 
|-
 
|-
|<mask data>
+
|1
|W
+
|R
|16 characters hexadecimal representation of the 8 bytes site code mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
+
|TPR module error
 
|-
 
|-
  
|rowspan="3"|o<address>.user.<n>
+
|rowspan="2"|i<address>.access.granted.1
|read
+
|0
|W
+
|R
|read the 16 bytes stored in module’s EEPROM for user N (<n> from 1 to 2000)
+
|no tag present at antenna 1
 +
|-
 +
|1
 +
|R
 +
|access granted to tag at antenna 1
 
|-
 
|-
|<user data>
+
 
|W
+
|rowspan="2"|i<address>.access.granted.2
|16 characters hexadecimal representation of the first 8 bytes of access control data for user N (N from 1 to 2000) , to be stored in module’s EEPROM
+
|0
 +
|R
 +
|no tag present at antenna 2
 
|-
 
|-
|<reset>
+
|1
|W
+
|R
|reset to 0 the total and daily counters for user <n>
+
|access granted to tag at antenna 2
 
|-
 
|-
  
|o<address>.users
+
|rowspan="8"|i<address>.access.denied
|erase
 
|W
 
|deletes all users data. This action requires up to about 27 seconds to be completed. It also deletes all i<address>.user.<n> and o<address>.user.<n> data points
 
|-
 
|}
 
 
 
----
 
 
 
=== MODKB ===
 
 
 
MODKB is the keypad access control module.
 
 
 
It uses 1 input and 1 output address.
 
 
 
PIN configuration data are written to the module’s EEPROM (persistent memory).
 
 
 
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
|-
 
 
 
|rowspan="2"|i<address>.1
 
 
|0  
 
|0  
 
|R
 
|R
|input pin 1 off
+
|access denied flags reset
 
|-
 
|-
|1
+
|site
 
|R
 
|R
|input pin 1 on
+
|access denied due to site code error
 
|-
 
|-
 
+
|code
|rowspan="2"|i<address>.2
 
|0
 
 
|R
 
|R
|input pin 2 off
+
|access denied due to user code error
 
|-
 
|-
|1
+
|total.limit
 
|R
 
|R
|input pin 2 on
+
|access denied due to exceeded total number of access grants
 
|-
 
|-
 
+
|daily.limit
|rowspan="2" style="white-space:nowrap"|i<address>.access.granted.<n>
 
|0
 
 
|R
 
|R
|reset
+
|access denied due to exceeded daily number of access grants
 
|-
 
|-
|1
+
|time
 
|R
 
|R
|access granted to PIN <n> (<n> from 1 to 30)
+
|access denied due to time range violation
 +
|-
 +
|day
 +
|R
 +
|access denied due to weekday violation
 
|-
 
|-
 
+
|expired
|i<address>.pin
 
|style="white-space:nowrap"|<pin code>
 
 
|R
 
|R
|the last pin code entered on the keypad (from 1 to 65535). Reset to 0 after programmed code persistence time
+
|access denied due expired tag
 
|-
 
|-
  
|rowspan="5"|i<address>.access.granted.<n>
+
|i<address>.denied.code
|0
+
|<tag code>
 
|R
 
|R
|access denied flags reset
+
|the tag code (decimal value of selected two bytes of the tag data) that was denied access
 
|-
 
|-
|site
+
 
 +
|i<address>.granted.1.code
 +
|<tag code>
 
|R
 
|R
|access denied due to site code error
+
|the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 1
 
|-
 
|-
|code
+
 
 +
|i<address>.granted.2.code
 +
|<tag code>
 
|R
 
|R
|access denied due to user code error
+
|the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 2
 
|-
 
|-
|time
+
 
 +
|i<address>.site.<n>
 +
|style="white-space:nowrap"|<site data>
 
|R
 
|R
|access denied due to time range violation
+
|16 characters hexadecimal representation of the 8 bytes data representing the Nth site code (N from 1 to 4) stored in module’s EEPROM
 
|-
 
|-
|day
+
 
 +
|i<address>.mask
 +
|style="white-space:nowrap"|<mask data>
 
|R
 
|R
|access denied due to weekday violation
+
|16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
 
|-
 
|-
  
|i<address>.pin.<n>
+
|i<address>.mask
|style="white-space:nowrap"|<pin data>
+
|<mask data>
 
|R
 
|R
|16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30) stored in module’s EEPROM
+
|16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
 
|-
 
|-
  
|rowspan="2"|o<address>.pin.<n>
+
|i<address>.user.<n>
|<pin data>
+
|<user data>
 +
|R
 +
|32 characters hexadecimal representation of the 16 bytes data for user <n> (N from 1 to 2000) stored in module’s EEPROM
 +
|-
 +
 
 +
|rowspan="2"|o<address>.site.<n>
 +
|<site data>
 +
|R
 +
|site data write successful
 +
|-
 +
|error
 +
|R
 +
|site data write error
 +
|-
 +
 
 +
|rowspan="2"|o<address>.mask
 +
|<mask data>
 +
|R
 +
|mask data write successful
 +
|-
 +
|error
 +
|R
 +
|mask data write error
 +
|-
 +
 
 +
|rowspan="2"|o<address>.user.<n>
 +
|<user data>
 
|R
 
|R
|pin data write successful
+
|user data write successful
 
|-
 
|-
 
|error
 
|error
 
|R
 
|R
|pin data write error
+
|user data write error
 
|-
 
|-
  
 
|rowspan="2"|o<address>.relay
 
|rowspan="2"|o<address>.relay
|0  
+
|0
 
|W
 
|W
 
|relay output off
 
|relay output off
Line 4,498: Line 4,708:
 
|1
 
|1
 
|W
 
|W
|relay output on (pulse output, resets to 0 immediately after the relay is closed, usually before the relay closure time)
+
|relay output pulse on, with pulse length according to the MODCA configuration (with firmware versions before 1.3 this data point remains at 1 and should be reset to 0 with an explicit command; with firmware 1.3 the data point value follows the relay state, and is automatically reset to 0 at the end of the pulse period)
 
|-
 
|-
  
|rowspan="2"|o<address>.lock.all
+
|rowspan="2"|o<address>.relay.forced
|0  
+
|0
 
|W
 
|W
|reset
+
|forced relay mode not set (default behaviour)
 
|-
 
|-
 
|1
 
|1
 
|W
 
|W
|disables access to all PINs
+
|forced relay mode set: the relay remains closed until the relay.forced command is reset (available with MODCA firmware version 2.0 or later)
 
|-
 
|-
  
|rowspan="2"|o<address>.lock.<n>
+
|rowspan="2"|o<address>.block
|0  
+
|0
 
|W
 
|W
|reset
+
|enable access control
 
|-
 
|-
 
|1
 
|1
 
|W
 
|W
|disables access to PIN <n> (<n> from 1 to 30)
+
|block access control
 
|-
 
|-
  
|rowspan="2"|o<address>.pin.<n>
+
|rowspan="2"|o<address>.access.granted.code
|read
+
|0
 
|W
 
|W
|read the 8 bytes stored in module’s EEPROM for PIN <n> (<n> from 1 to 30)
+
|reset
 
|-
 
|-
|<pin data>
+
|1
 
|W
 
|W
|16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30), to be stored in module’s EEPROM
+
|allow access even when site code is not valid
 
|-
 
|-
  
|}
+
|rowspan="2"|o<address>.access.granted.total.limit
 
+
|0
----
+
|W
 
+
|reset
=== MODDI ===
 
 
 
500W IGBT dimmer module.
 
 
 
It uses 1 output address.  
 
 
 
{| class="wikitable"
 
!ID
 
!Value
 
!R/W
 
!Description
 
 
|-
 
|-
 
+
|1
|rowspan="3"|o<address>
 
|0...100
 
|RW
 
|brightness level according to current ramp
 
|-
 
|off
 
|RW
 
|dimmer off
 
|-
 
|101...173
 
 
|W
 
|W
|command (see MODDI commands table)
+
|allow access even when the total limit of access grants has been exceeded
 
|-
 
|-
  
|rowspan="2"|o<address>.noline
+
|rowspan="2"|o<address>.access.granted.daily.limit
 
|0
 
|0
|R
+
|W
|AC line detected
+
|reset
 
|-
 
|-
 
|1
 
|1
|R
+
|W
|AC line fault
+
|allow access even when the daily limit of access grants has been exceeded
 
|-
 
|-
  
|rowspan="2"|o<address>.overcurrent
+
|rowspan="2"|o<address>.access.granted.time
 
|0
 
|0
|R
+
|W
|normal
+
|reset
 
|-
 
|-
 
|1
 
|1
|R
+
|W
|overcurrent protection
+
|allow access even outside of the allowed timeframe
 
|-
 
|-
  
|rowspan="2"|o<address>.overvoltage
+
|rowspan="2"|o<address>.access.granted.day
 
|0
 
|0
|R
+
|W
|normal
+
|reset
 
|-
 
|-
 
|1
 
|1
|R
+
|W
|overvoltage protection
+
|allow access even outside of the allowed weekdays
 
|-
 
|-
  
|rowspan="2"|o<address>.overtemperature
+
|rowspan="2"|o<address>.access.granted.expired
 
|0
 
|0
|R
+
|W
|normal
+
|reset
 
|-
 
|-
 
|1
 
|1
|R
+
|W
|overtemperature protection
+
|allow access even when the tag is expired
 
|-
 
|-
  
|}
+
|rowspan="2"|o<address>.site.<n>
 
+
|read
The dimmer level can be set using additional formats besides the standard percent values:
+
|W
*absolute positive integer number between 0 and 100
+
|read the 8 bytes stored in module’s EEPROM for site N code (<n> from 1 to 4)
*percent number, formatted as x%
+
|-
*fractional format, formatted as “n/m”, where 0 <= n <= m.
+
|<site data>
 +
|W
 +
|16 characters hexadecimal representation of the 8 bytes data of site N code (N from 1 to 4), to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
 +
|-
 +
 
 +
|rowspan="2"|o<address>.mask
 +
|read
 +
|W
 +
|read the 8 bytes mask stored in module’s EEPROM
 +
|-
 +
|<mask data>
 +
|W
 +
|16 characters hexadecimal representation of the 8 bytes site code mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
 +
|-
 +
 
 +
|rowspan="3"|o<address>.user.<n>
 +
|read
 +
|W
 +
|read the 16 bytes stored in module’s EEPROM for user N (<n> from 1 to 2000)
 +
|-
 +
|<user data>
 +
|W
 +
|16 characters hexadecimal representation of the first 8 bytes of access control data for user N (N from 1 to 2000) , to be stored in module’s EEPROM
 +
|-
 +
|<reset>
 +
|W
 +
|reset to 0 the total and daily counters for user <n>
 +
|-
 +
 
 +
|o<address>.users
 +
|erase
 +
|W
 +
|deletes all users data. This action requires up to about 27 seconds to be completed. It also deletes all i<address>.user.<n> and o<address>.user.<n> data points
 +
|-
 +
|}
  
 
----
 
----
  
=== MODCL ===
+
=== MODKB ===
 +
 
 +
MODKB is the keypad access control module.
  
Temperature control module.
+
It uses 1 input and 1 output address.  
  
It uses 1 input and one output address.  
+
PIN configuration data are written to the module’s EEPROM (persistent memory).
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 4,624: Line 4,849:
 
|-
 
|-
  
|rowspan="2"|i<address>
+
|rowspan="2"|i<address>.1
|on
+
|0
 
|R
 
|R
|zone on
+
|input pin 1 off
 
|-
 
|-
|off
+
|1
 
|R
 
|R
|zone off
+
|input pin 1 on
 
|-
 
|-
  
|rowspan="2"|i<address>.mode
+
|rowspan="2"|i<address>.2
|winter
+
|0
 
|R
 
|R
|winter mode
+
|input pin 2 off
 
|-
 
|-
|summer
+
|1
 
|R
 
|R
|summer mode
+
|input pin 2 on
 
|-
 
|-
  
|rowspan="4"|i<address>.fan
+
|rowspan="2" style="white-space:nowrap"|i<address>.access.granted.<n>
|min
+
|0
 
|R
 
|R
|min fan speed
+
|reset
 
|-
 
|-
|med
+
|1
 
|R
 
|R
|medium fan speed
+
|access granted to PIN <n> (<n> from 1 to 30)
 
|-
 
|-
|max
+
 
 +
|i<address>.pin
 +
|style="white-space:nowrap"|<pin code>
 
|R
 
|R
|max fan speed
+
|the last pin code entered on the keypad (from 1 to 65535). Reset to 0 after programmed code persistence time
 
|-
 
|-
|off
+
 
 +
|rowspan="5"|i<address>.access.granted.<n>
 +
|0
 
|R
 
|R
|fan off
+
|access denied flags reset
 
|-
 
|-
 
+
|site
|rowspan="2"|i<address>.fan.mode
 
|man
 
 
|R
 
|R
|manual fan mode
+
|access denied due to site code error
 
|-
 
|-
|auto
+
|code
 
|R
 
|R
|auto fan mode
+
|access denied due to user code error
 
|-
 
|-
 
+
|time
|rowspan="5"|i<address>.setpoint
 
|1
 
 
|R
 
|R
|setpoint 1
+
|access denied due to time range violation
 
|-
 
|-
|2
+
|day
 
|R
 
|R
|setpoint 2
+
|access denied due to weekday violation
 
|-
 
|-
|3
+
 
 +
|i<address>.pin.<n>
 +
|style="white-space:nowrap"|<pin data>
 
|R
 
|R
|setpoint 3
+
|16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30) stored in module’s EEPROM
 
|-
 
|-
|off
+
 
 +
|rowspan="2"|o<address>.pin.<n>
 +
|<pin data>
 
|R
 
|R
|off
+
|pin data write successful
 
|-
 
|-
|man
+
|error
 
|R
 
|R
|manual setpoint
+
|pin data write error
 
|-
 
|-
  
|rowspan="2"|i<address>.setpoint.mode
+
|rowspan="2"|o<address>.relay
|man
+
|0
|R
+
|W
|manual setpoint mode
+
|relay output off
 
|-
 
|-
|auto
+
|1
|R
+
|W
|auto setpoint mode
+
|relay output on (pulse output, resets to 0 immediately after the relay is closed, usually before the relay closure time)
 
|-
 
|-
  
|rowspan="2"|i<address>.temp
+
|rowspan="2"|o<address>.lock.all
|<temp>
+
|0
|R
+
|W
|temperature value (in C/10)
+
|reset
 
|-
 
|-
|fault
+
|1
|R
+
|W
|temperature sensor fault
+
|disables access to all PINs
 
|-
 
|-
  
|rowspan="3"|i<address>.status
+
|rowspan="2"|o<address>.lock.<n>
|off
+
|0
|R
+
|W
|off
+
|reset
 
|-
 
|-
|cooling
+
|1
|R
+
|W
|cooling status mode
+
|disables access to PIN <n> (<n> from 1 to 30)
|-
 
|heating
 
|R
 
|heating status mode
 
 
|-
 
|-
  
|rowspan="2"|o<address>
+
|rowspan="2"|o<address>.pin.<n>
|on
+
|read
|RW
+
|W
|zone on (writing on to this datapoint doesn't turn the zone on, it simply resets the off command)
+
|read the 8 bytes stored in module’s EEPROM for PIN <n> (<n> from 1 to 30)
 
|-
 
|-
|off
+
|<pin data>
|RW
+
|W
|zone off
+
|16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30), to be stored in module’s EEPROM
 
|-
 
|-
  
|rowspan="2"|o<address>.mode
+
|}
|winter
+
 
|RW
+
----
|winter mode
+
 
|-
+
=== MODDI ===
|summer
+
 
|RW
+
500W IGBT dimmer module.
|summer mode
+
 
 +
It uses 1 output address.  
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 
|-
 
|-
  
|rowspan="3"|o<address>.setpoint.mode
+
|rowspan="3"|o<address>
|man
+
|0...100
 
|RW
 
|RW
|manual mode
+
|brightness level according to current ramp
 
|-
 
|-
|auto
+
|off
 
|RW
 
|RW
|auto mode
+
|dimmer off
 
|-
 
|-
|off
+
|101...173
|RW
+
|W
|zone off
+
|command (see MODDI commands table)
 
|-
 
|-
  
|rowspan="5"|o<address>.setpoint
+
|rowspan="2"|o<address>.noline
 +
|0
 +
|R
 +
|AC line detected
 +
|-
 
|1
 
|1
|RW
+
|R
|setpoint 1
+
|AC line fault
 
|-
 
|-
|2
+
 
|RW
+
|rowspan="2"|o<address>.overcurrent
|setpoint 2
+
|0
 +
|R
 +
|normal
 
|-
 
|-
|3
+
|1
|RW
+
|R
|setpoint 3
+
|overcurrent protection
 
|-
 
|-
 +
 +
|rowspan="2"|o<address>.overvoltage
 
|0
 
|0
|RW
+
|R
|setpoint off
+
|normal
 
|-
 
|-
|man
+
|1
|RW
+
|R
|manual setpoint
+
|overvoltage protection
 
|-
 
|-
  
|o<address>.setpoint.temp.1
+
|rowspan="2"|o<address>.overtemperature
|<temp>
+
|0
|RW
+
|R
|temperature setpoint 1 value (in C/10)
+
|normal
 
|-
 
|-
 
+
|1
|o<address>.setpoint.temp.2
+
|R
|<temp>
+
|overtemperature protection
|RW
 
|temperature setpoint 2 value (in C/10)
 
|-
 
 
 
|o<address>.setpoint.temp.3
 
|<temp>
 
|RW
 
|temperature setpoint 3 value (in C/10)
 
 
|-
 
|-
  
|o<address>.setpoint.temp.man
 
|<temp>
 
|RW
 
|temperature manual setpoint value (in C/10)
 
|-
 
 
|}
 
|}
  
----
+
The dimmer level can be set using additional formats besides the standard percent values:
 +
*absolute positive integer number between 0 and 100
 +
*percent number, formatted as x%
 +
*fractional format, formatted as “n/m”, where 0 <= n <= m.
 +
 
 +
----
  
=== MOD4TP/I ===
+
=== MODCL ===
  
8 digital input and 4 roller shutters or blinds with detection of travel time.
+
Temperature control module.
  
 +
It uses 1 input and one output address.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 4,823: Line 5,056:
 
|-
 
|-
  
|rowspan="2"|i<address>.1
+
|rowspan="2"|i<address>
|0
+
|on
 
|R
 
|R
|input pin 1 off
+
|zone on
 
|-
 
|-
|1
+
|off
 
|R
 
|R
|input pin 1 on
+
|zone off
 
|-
 
|-
  
|rowspan="2"|i<address>.2
+
|rowspan="2"|i<address>.mode
|0
+
|winter
 
|R
 
|R
|input pin 2 off
+
|winter mode
 
|-
 
|-
|1
+
|summer
 
|R
 
|R
|input pin 2 on
+
|summer mode
 
|-
 
|-
  
|rowspan="2"|i<address>.3
+
|rowspan="4"|i<address>.fan
|0
+
|min
 
|R
 
|R
|input pin 3 off
+
|min fan speed
 
|-
 
|-
|1
+
|med
 
|R
 
|R
|input pin 3 on
+
|medium fan speed
 
|-
 
|-
 
+
|max
|rowspan="2"|i<address>.4
 
|0
 
 
|R
 
|R
|input pin 4 off
+
|max fan speed
 
|-
 
|-
|1
+
|off
 
|R
 
|R
|input pin 4 on
+
|fan off
 
|-
 
|-
  
|rowspan="2"|i<address>.5
+
|rowspan="2"|i<address>.fan.mode
|0
+
|man
 +
|R
 +
|manual fan mode
 +
|-
 +
|auto
 
|R
 
|R
|input pin 5 off
+
|auto fan mode
 
|-
 
|-
 +
 +
|rowspan="5"|i<address>.setpoint
 
|1
 
|1
 
|R
 
|R
|input pin 5 on
+
|setpoint 1
 
|-
 
|-
 
+
|2
|rowspan="2"|i<address>.6
 
|0
 
 
|R
 
|R
|input pin 6 off
+
|setpoint 2
 
|-
 
|-
|1
+
|3
 
|R
 
|R
|input pin 6 on
+
|setpoint 3
 
|-
 
|-
 
+
|off
|rowspan="2"|i<address>.7
 
|0
 
 
|R
 
|R
|input pin 7 off
+
|off
 
|-
 
|-
|1
+
|man
 
|R
 
|R
|input pin 7 on
+
|manual setpoint
 
|-
 
|-
  
|rowspan="2"|i<address>.8
+
|rowspan="2"|i<address>.setpoint.mode
|0
+
|man
 
|R
 
|R
|input pin 8 off
+
|manual setpoint mode
 
|-
 
|-
|1
+
|auto
 
|R
 
|R
|input pin 8 on
+
|auto setpoint mode
 
|-
 
|-
  
|rowspan="8"|o<address>.1
+
|rowspan="2"|i<address>.temp
|up
+
|<temp>
|RW
+
|R
|shutter 1 up command
+
|temperature value (in C/10)
|-
+
|-
|down
+
|fault
|RW
+
|R
|shutter 1 down command
+
|temperature sensor fault
|-
+
|-
|stop
+
 
|RW
+
|rowspan="3"|i<address>.status
|shutter 1 stop command
+
|off
|-
+
|R
|up1
+
|off
|W
+
|-
|shutter 1 up one step command
+
|cooling
|-
+
|R
|down1
+
|cooling status mode
|W
+
|-
|shutter 1 down one step command
+
|heating
|-
+
|R
|unknown
+
|heating status mode
|R
+
|-
|shutter 1 unknown state
+
 
|-
+
|rowspan="2"|o<address>
|offup
+
|on
|R
+
|RW
|shutter 1 off, up position
+
|zone on (writing on to this datapoint doesn't turn the zone on, it simply resets the off command)
|-
+
|-
|offdown
+
|off
|R
+
|RW
|shutter 1 off, down position
+
|zone off
|-
+
|-
|}
+
 
 
+
|rowspan="2"|o<address>.mode
You can also set the value to “on” or “off”, that is equivalent to 1 and 0.
+
|winter
 
+
|RW
----
+
|winter mode
 
+
|-
== User Interface ==
+
|summer
 
+
|RW
All CONTATTO devices data points that have been defined in the systemtopo.txt database are automatically listed in the Project Editor. Adding a button to control a device output point requires just a few clicks and no additional EVENTS logic.
+
|summer mode
 
+
|-
 
+
 
[[File:IO_Servers_Contatto_Project_Editor.png|center|border|600px]]
+
|rowspan="3"|o<address>.setpoint.mode
 
+
|man
 
+
|RW
Besides the direct association of control buttons and data points, the CONTATTO driver also automatically updates graphical objects that represent values or states of complex devices, like the CLIMA2 temperature control unit. It will also automatically intercept buttons to manually set operation modes and temperature set-points.
+
|manual mode
 
+
|-
----
+
|auto
 
+
|RW
=== CLIMA2 ===
+
|auto mode
 
+
|-
You can use the [[temp]] and [[tempmini]] objects to control CLIMA2 devices.
+
|off
 
+
|RW
 
+
|zone off
[[File:UI Object clima2.png|border]]
+
|-
 
+
 
 
+
|rowspan="5"|o<address>.setpoint
The fan button, in the bottom right-hand corner, is not enabled because the manual control of the fan speed is not available. The M button, in the top right-hand corner, allows to switch the module on or off.
+
|1
 
+
|RW
You can also easily create customized controls for the CLIMA2, using standard graphic objects that are automatically set to show the device’s status and intercepted to send user commands.
+
|setpoint 1
 
+
|-
==== UISET Actions ====
+
|2
{| class="wikitable"
+
|RW
 +
|setpoint 2
 +
|-
 +
|3
 +
|RW
 +
|setpoint 3
 +
|-
 +
|0
 +
|RW
 +
|setpoint off
 +
|-
 +
|man
 +
|RW
 +
|manual setpoint
 +
|-
 +
 
 +
|o<address>.setpoint.temp.1
 +
|<temp>
 +
|RW
 +
|temperature setpoint 1 value (in C/10)
 +
|-
 +
 
 +
|o<address>.setpoint.temp.2
 +
|<temp>
 +
|RW
 +
|temperature setpoint 2 value (in C/10)
 +
|-
 +
 
 +
|o<address>.setpoint.temp.3
 +
|<temp>
 +
|RW
 +
|temperature setpoint 3 value (in C/10)
 +
|-
 +
 
 +
|o<address>.setpoint.temp.man
 +
|<temp>
 +
|RW
 +
|temperature manual setpoint value (in C/10)
 +
|-
 +
|}
 +
 
 +
----
 +
 
 +
=== MOD4TP/I ===
 +
 
 +
8 digital input and 4 roller shutters or blinds with detection of travel time.
 +
 
 +
 
 +
{| class="wikitable"
 +
!ID
 +
!Value
 +
!R/W
 +
!Description
 +
|-
 +
 
 +
|rowspan="2"|i<address>.<N>
 +
|0
 +
|R
 +
|input pin N off
 +
|-
 +
|1
 +
|R
 +
|input pin N on
 +
|-
 +
 
 +
|rowspan="10"|o<address>.<N>
 +
|up
 +
|RW
 +
|shutter N up command
 +
|-
 +
|down
 +
|RW
 +
|shutter N down command
 +
|-
 +
|stop
 +
|rowspan="2"|W
 +
|rowspan="2"|shutter N stop command
 +
|-
 +
|off
 +
|-
 +
|up1
 +
|W
 +
|shutter N up one step command
 +
|-
 +
|down1
 +
|W
 +
|shutter N down one step command
 +
|-
 +
|unknown
 +
|R
 +
|shutter N unknown state
 +
|-
 +
|offup
 +
|R
 +
|shutter N off, up position
 +
|-
 +
|offdown
 +
|R
 +
|shutter N off, down position
 +
|-
 +
|0-100
 +
|R
 +
|shutter N current position
 +
|-
 +
 
 +
|rowspan="2"|o<address>.calibration.<N>
 +
|0
 +
|R
 +
|shutter N normal operations
 +
|-
 +
|1
 +
|RW
 +
|shutter N calibration command
 +
|-
 +
 
 +
|-
 +
|o<address>.position.<N>
 +
|0-100
 +
|RW
 +
|shutter N position command
 +
 
 +
|-
 +
|o<address>.slats.<N>
 +
|0-100
 +
|W
 +
|shutter N slats position command (no feedback available)
 +
|-
 +
 
 +
|}
 +
 
 +
----
 +
 
 +
== User Interface ==
 +
 
 +
All CONTATTO devices data points that have been defined in the systemtopo.txt database are automatically listed in the Project Editor. Adding a button to control a device output point requires just a few clicks and no additional EVENTS logic.
 +
 
 +
 
 +
[[File:IO_Servers_Contatto_Project_Editor.png|center|border|600px]]
 +
 
 +
 
 +
Besides the direct association of control buttons and data points, the CONTATTO driver also automatically updates graphical objects that represent values or states of complex devices, like the CLIMA2 temperature control unit. It will also automatically intercept buttons to manually set operation modes and temperature set-points.
 +
 
 +
----
 +
 
 +
=== CLIMA2 ===
 +
 
 +
You can use the [[temp]] and [[tempmini]] objects to control CLIMA2 devices.
 +
 
 +
 
 +
[[File:UI Object clima2.png|border]]
 +
 
 +
 
 +
The fan button, in the bottom right-hand corner, is not enabled because the manual control of the fan speed is not available. The M button, in the top right-hand corner, allows to switch the module on or off.
 +
 
 +
You can also easily create customized controls for the CLIMA2, using standard graphic objects that are automatically set to show the device’s status and intercepted to send user commands.
 +
 
 +
==== UISET Actions ====
 +
{| class="wikitable"
 
!ID
 
!ID
 
!Attribute
 
!Attribute
Line 5,377: Line 5,767:
  
 
|}
 
|}
 +
 +
----
 +
 +
=== MOD4TP/I ===
 +
 +
==== Using slider objects for MOD4TP/I shutter's position ====
 +
 +
You can use the slider objects, [[slider|sliderv]] and [[slider|sliderh]], to display and control the position. Set both the slider's ''ID'' and ''address'' to <server_name>.<address>.<N>, with N from 1 to 4.
 +
 +
{{tip|Note that you can set the ''inverse'' attribute of the [[slider|sliderv]] object to ''true'', in order to have the cursor at the top instead of bottom of the slider when the position is 0.}}
  
 
== Release Notes ==
 
== Release Notes ==
  
 
=== 3.6.0 ===
 
=== 3.6.0 ===
 +
*added support for MOD32IL
 
*added support for MOD4TP/I
 
*added support for MOD4TP/I
 +
*added support for MODDALI8
 +
*added support for MODANAM
 
*fixed a bug that could cause erroneous readings of MODANA's ptotk datapoint when total active power is negative
 
*fixed a bug that could cause erroneous readings of MODANA's ptotk datapoint when total active power is negative
  

Latest revision as of 17:13, 10 May 2018

The CONTATTO system is DUEMMEGI’s proprietary bus architecture for building automation. HSYCO fully integrates with this system through the MCP control and gateway module, and its FXP-XT serial communication protocol.

A serial connection between the MCPXT and the HSYCO SERVER is required for the integration, either directly through the server’s RS-232 port or via the RS-232 port of a supported serial to IP gateway, including the WEBS module.

The MCP4 can be connected via the integrated serial to IP gateway.

The Contatto I/O Server requires MCP-XT firmware version 3.0 or later. The MCPIDE configuration tools pass-through support for secure access to the MCP via HSYCO requires MCPIDE version 3.2.3 or later.

Communication

Use a DE-9 (often called DB-9) male-female RS-232 straight cable to connect the RS-232 MCPXT port to the serial port on HSYCO SERVER or serial gateway. You can also connect the MCPXT using the RS-485 port. The MCP4 can also be connected via the integrated serial to IP gateway.

RS-232 parameters:

Baud rate 9600, 38400, 57600 or 115200 bps (according to the MCP serial port setting)
Data bits 8
Stop bit 1
Parity none
Flow control none

Note A speed of 115200 bps is recommended to achieve good performance, particularly when the number of devices connected to the bus is large.


High Availability

  • Shutdown when inactive: defaults to false.

HSYCO Configuration

You can define and connect to more than one CONTATTO bus using several MCP gateways.

The CONTATTO I/O Server also supports dual, redundant connections between HSYCO and MCP.

If the main connection fails, HSYCO automatically re-routes the communication with MCP through the fail-over connection.

Options

ID Default Values Description
startupevents false true generate IO events also during the driver’s start-up phase
false start generating events only after HSYCO is aligned with the current status of the system
inputdiscovery false true auto-detects CONTATTO’s input devices as configured in the MCP, and automatically creates the list of all detected devices and individual data points in the systemtopo.txt file. Should be enabled to allow the automatic update of (button) objects’ states
false auto-detect for input devices is disabled
outputdiscovery true true auto-detects CONTATTO’s output devices as configured in the MCP, and automatically creates the list of all detected devices and individual data points in the systemtopo.txt file. Should be enabled to allow the automatic update of (button) objects’ states
false auto-detect for output devices is disabled
virtualdiscovery false true auto-detects CONTATTO’s virtual points for input and output devices as configured in the MCP, and automatically creates the list of all detected virtual data points in the systemtopo.txt file. Should be enabled to allow the automatic update of (button) objects’ states
false auto-detect for devices’ virtual data points is disabled
virtualpoints false 1 ... 2032 enables polling for the first n virtual points of the MCP. Enable this option only if you need to generate I/O events based on these virtual points
true enables polling for all the 2032 virtual points of the MCP
false polling of the MCP virtual data points is disabled
registers false 1 ... 1024 enables polling for registers R0-Rn of the MCP. Enable this option only if you need to generate I/O events based on these registers
true enables polling for registers R0-R127 of the MCP
false polling of the MCP registers is disabled
powerdisplay false ≥ 0 (MODANA address) enables the automatic display in the GUI of the total real power measured by a MODANA or MODANAM module connected to this MCP. Note that, if you have more than one MCP gateway, you should enable this option for one gateway only
false power display disabled for this MCP
powersensivity 50 ≥ 0 measured power changes are reported only if the difference from last reading is equal or greater than the power sensivity option, in Watts
detectevents false true generate forced events when a device is detected at start-up
false do not generate events when a device is detected at start-up
toolspassword string set this option with a long string (only letters and numbers) password to allow the remote connection of MCP-IDE and other configuration tools to the MCP gateways that are connected to HSYCO. For additional security, it is recommended to set this option only when required
language english en it fr language for all messages from the CONTATTO system: English, Italian or French

Initialization and Connection Events

Event name Value Description
connection online connection established to the MCP module
offline HSYCO can’t connect to the MCP module
detected.input.<n>. model name an input device of the type passed as value has been detected at address <n>, using addresses
detected.output.<n>. model name an output device of the type passed as value has been detected at address <n>, using addresses

The Device Configuration Database

The systemtopo.txt file contains the list of all devices and their individual input, output and virtual data points that could be directly associated to graphic object in the Web-based user interface. This file can be filled manually or automatically by HSYCO at start-up.

To enable automatic discovery and automatic generation of devices’ information in the systemtopo file, use the inputdiscovery, outputdiscovery and virtualdiscovery options in Settings. The default behavior is to only discover devices with output data points.

This is an example of an automatically generated systemtopo.txt file:

(devices)
contatto.o10.1 : LIGHT ; LIGHT
contatto.o6.1 : LIGHT ; DIMMER
contatto.o7.2 : LIGHT ; LIGHT
contatto.o7.1 : LIGHT ; DIMMER
contatto.o9.2 : AUTOM ; VSHUT
contatto.o5.4 : LIGHT ; LIGHT
contatto.o9.1 : AUTOM ; VSHUT
contatto.o5.3 : LIGHT ; LIGHT
contatto.o5.2 : LIGHT ; LIGHT
contatto.o5.1 : LIGHT ; LIGHT

You should then manually add comments and other optional parameters:

(devices)
contatto.o10.1 : LIGHT ; LIGHT; main entrance light
contatto.o6.1 : LIGHT ; DIMMER; lobby dimmer
contatto.o7.2 : LIGHT ; LIGHT; kitchen workbench
contatto.o7.1 : LIGHT ; DIMMER; kitchen main dimmer

MCP Virtual Data Points and Registers

The MCP implements 2032 virtual points for binary (on/off) data and 1024 registers for positive scalar values (0-65535). All the virtual points and the registers can optionally generate I/O events. You can also write to the virtual data points and registers using the IO action in EVENTS or ioSet() method in Java.

You cannot directly control the MCP virtual data points and registers using GUI objects.

To enable polling of the current state of the MCP’s virtual data points, enable the virtualpoints options in hsyco.ini.

To enable polling of the current state of the MCP’s registers, enable the registers options in hsyco.ini.

If you only have to write to virtual points or registers, enabling polling is not strictly required.

ID Value R/W Description
v0.<n> 0 RW virtual data point <n> off (<n>: 1-2032)
1 RW virtual data point <n> on (<n>: 1-2032)
r0.<n> <x> RW register <n> off (<n>: 0-1023) set to value <x> (<x>: 0-65535)

MCP Internal Clock

The MCP module has an integrated real-time clock. You can use the clock datapoint to read the MCP date and time, and set the MCP clock to HSYCO’s current time.

ID Value R/W Description
clock yyyy-mm-dd hh:mm:ss R the MCP clock current time
read W read the MCP clock, and the delta with HSYCO’s time
sync W set the MCP clock to HSYCO’s current time
clock.delta integer number R the delta time in seconds between the MCP and HSYCO clocks. A positive number means that the MCP clock is ahead of HSYCO

CONTATTO Modules Events and Control

Module Code Description
MOD8I/A 8 digital input module for NO contacts in modular housing
MOD32I/A 32 digital input module for NO contacts in modular housing
MOD32IL 32 digital input module for NO contacts in modular housing
MOD32IN 32 digital input module for NO contacts in modular housing
MOD8INP2/A 8 digital input module for NO contacts
MOD8INP2/C 8 digital input module for NC contacts
MOAN/I 0÷10V analog input module
MOAN/I4 quad 0÷10V analog input module
MI420 4÷20mA analog input module
MI420-X4 quad 4÷20mA analog input module
MOD4AM12/V/I 4-channel 0÷10V or 4÷20mA (0÷21mA) analog input module
MOD2PT input module for two PT100 temperature probes
MODCNT 4-channel counter module in modular housing
MODNTC input module for ambient temperature sensors and potentiometers
MOD4I/A 4-digital input module for NO contacts in modular housing
MOD4I/S 4-digital input module for NO contacts in 2M modular housing
MODLUX ambient light measurement module with sensor for ceiling mounting
MODMETEO meteorological data detection module for Contatto bus
MOD8R 8 power relay output module
MODPNP 8 positive logic (PNP) “open collector” digital output module
MODREL 8 relay output compact module in DIN 3M housing
MOAN/U 0÷10V analog output module
MO420 4÷20mA analog output module
MODLC MODLC-P ambient light regulator module with integrated sensor
MOD4-4S 4 digital input and 4 power relay output multifunction module
MOD2-2R 2 digital input and 2 power relay output module
MOD4-4 4 digital input and 4 digital output module
MOD2DM 2x300W dimmer module
MOD2DV dual 1-10V output for electronic ballast driving
MOD8IL 8 digital input – 8 LED output module for wall box
MOD4DV quad 0-10V output module for generic applications or for external dimmers control
MODDMX DMX gateway
MODDALI 4-channel DALI gateway
MODDALI8 8-channel broadcast DALI gateway
CLIMA2 module for the regulation of the ambient temperature
MODANA network analyzer module
MODANAM network analyzer module
MODPQ5 tags proximity reader and programmer
MODHT hotel room controller
MODCA access control module
MODKB keypad access control module
MODDI 500W IGBT dimmer module
MODCL temperature control module
MOD4TP/I 8 digital input and 4 roller shutters or blinds with detection of travel time

MOD8I/A

8 digital input module for NO contacts in modular housing.

It uses one input address in the CONTATTO bus.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on

MOD32I/A

32 digital input module for NO contacts in modular housing.

It uses four addresses of the Contatto bus, one for each group of 8 inputs.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on
i<address+1>.1 0 R input pin 1 off
1 R input pin 1 on
i<address+1>.2 0 R input pin 2 off
1 R input pin 2 on
i<address+1>.3 0 R input pin 3 off
1 R input pin 3 on
i<address+1>.4 0 R input pin 4 off
1 R input pin 4 on
i<address+1>.5 0 R input pin 5 off
1 R input pin 5 on
i<address+1>.6 0 R input pin 6 off
1 R input pin 6 on
i<address+1>.7 0 R input pin 7 off
1 R input pin 7 on
i<address+1>.8 0 R input pin 8 off
1 R input pin 8 on
i<address+2>.1 0 R input pin 1 off
1 R input pin 1 on
i<address+2>.2 0 R input pin 2 off
1 R input pin 2 on
i<address+2>.3 0 R input pin 3 off
1 R input pin 3 on
i<address+2>.4 0 R input pin 4 off
1 R input pin 4 on
i<address+2>.5 0 R input pin 5 off
1 R input pin 5 on
i<address+2>.6 0 R input pin 6 off
1 R input pin 6 on
i<address+2>.7 0 R input pin 7 off
1 R input pin 7 on
i<address+2>.8 0 R input pin 8 off
1 R input pin 8 on
i<address+3>.1 0 R input pin 1 off
1 R input pin 1 on
i<address+3>.2 0 R input pin 2 off
1 R input pin 2 on
i<address+3>.3 0 R input pin 3 off
1 R input pin 3 on
i<address+3>.4 0 R input pin 4 off
1 R input pin 4 on
i<address+3>.5 0 R input pin 5 off
1 R input pin 5 on
i<address+3>.6 0 R input pin 6 off
1 R input pin 6 on
i<address+3>.7 0 R input pin 7 off
1 R input pin 7 on
i<address+3>.8 0 R input pin 8 off
1 R input pin 8 on

MOD32IL

32 digital input module for NO contacts in modular housing.

It uses one addresses of the Contatto bus and four channels, one for each group of 8 inputs.

ID Value R/W Description
i<address>.N

N=1-32

0 R input pin N off
1 R input pin N on

MOD32IN

32 digital input module for NO contacts in modular housing.

It uses one addresses of the Contatto bus and four channels, one for each group of 8 inputs.

ID Value R/W Description
i<address>.N

N=1-32

0 R input pin N off
1 R input pin N on

MOD8INP2/A

8 digital input module for NO contacts.

It uses one input address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on

MOD8INP2/C

8 digital input module for NC contacts.

It uses one input address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on

MOAN/I

0÷10V analog input module.

It uses one input address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 255 R voltage value divided in 255 steps

MOAN/I4

Quad 0÷10V analog input module.

It uses four consecutive addresses of the Contatto bus, one for each input.

ID Value R/W Description
i<address>.1 0 ... 255 R voltage value divided in 255 steps
i<address+1>.1 0 ... 255 R voltage value divided in 255 steps
i<address+2>.1 0 ... 255 R voltage value divided in 255 steps
i<address+3>.1 0 ... 255 R voltage value divided in 255 steps

MI420

4÷20mA analog input module.

It uses one input address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 255 R current value divided in 255 steps

MI420-X4

Quad 4÷20mA analog input module.

It uses four consecutive addresses of the Contatto bus, one for each input.

ID Value R/W Description
i<address>.1 0 ... 255 R current value divided in 255 steps
i<address+1>.1 0 ... 255 R current value divided in 255 steps
i<address+2>.1 0 ... 255 R current value divided in 255 steps
i<address+3>.1 0 ... 255 R current value divided in 255 steps

MOD4AM12/V/I

4-channel 0÷10V or 4÷20mA (0÷21mA) analog input module.

It uses one input address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 4095 R measurement range divided in 4095 steps
i<address>.2 0 ... 4095 R measurement range divided in 4095 steps
i<address>.3 0 ... 4095 R measurement range divided in 4095 steps
i<address>.4 0 ... 4095 R measurement range divided in 4095 steps

MOD2PT

Input module for two PT100 temperature probes.

It uses one or two addresses according to how the dip-switch is set.

If both channels are enabled (IN1 and IN2), setting the n “base” address through the FXPRO programmer, the input address and address+1 (consecutive) will be automatically assigned to the module.

ID Value R/W Description
i<address>.1 0 ... 255 R range –40 ÷ +87.5°C: code 0 corresponds to –40°C and code 255 corresponds to +87.5°C
i<address+1>.1 0 ... 255 R range –40 ÷ +87.5°C: code 0 corresponds to –40°C and code 255 corresponds to +87.5°C

MODCNT

4-channel counter module in modular housing.

It uses one input address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 65535 R number of pulses
i<address>.2 0 ... 65535 R number of pulses
i<address>.3 0 ... 65535 R number of pulses
i<address>.4 0 ... 65535 R number of pulses

MODNTC

Input module for ambient temperature sensors and potentiometers.

It uses one input address of the Contatto bus.

The temperature values measured by MODNTC module are reported as Kelvin degrees multiplied by 10; in other words, 0°C will be reported as 2730, 0.1°C will be reported as 2731 and so on.

Concerning the potentiometer channels, the values read from the module will be 0 with the potentiometer at its minimum position and it will be 1000 with the potentiometer at its maximum position.

ID Value R/W Description
i<address>.1 0 ... 4095 R temperature value
i<address>.2 0 ... 4095 R temperature value
i<address>.3 0 ... 4095 R temperature value
i<address>.4 0 ... 4095 R temperature value

MOD4I/A

4-digital input module for NO contacts in modular housing.

It uses one input address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
i<address> 0 R input pin 1 off
1 R input pin 1 on
i<address+1> 0 R input pin 1 off
1 R input pin 1 on
i<address+2> 0 R input pin 1 off
1 R input pin 1 on
i<address+3> 0 R input pin 1 off
1 R input pin 1 on

MOD4I/S

4-digital input module for NO contacts in 2M modular housing.

It uses one address of the Contatto bus.

ID Value R/W Description
i<address> 0 R input pin 1 off
1 R input pin 1 on
i<address+1> 0 R input pin 1 off
1 R input pin 1 on
i<address+2> 0 R input pin 1 off
1 R input pin 1 on
i<address+3> 0 R input pin 1 off
1 R input pin 1 on

MODLUX

Ambient light measurement module with sensor for ceiling mounting.

It uses one address of the Contatto bus.

ID Value R/W Description
i<address>.1 0 ... 1023 R ambient brightness value

MODMETEO

Meteorological data detection module for Contatto bus.

It uses one input address and, if enabled by the configuration panel of MCP IDE, one output address with the same value.

ID Value R/W Description
i<address>.temp <temp> R temperature value (in C/10)
i<address>.lux <lux*10> R daylight value in tens of LUX
i<address>.wind 1 m/s / 10 R wind speed value
i<address>.rain 0 R no rain
1 R rain
i<address>.night 0 R day
1 R night
i<address>.temp.limit 0 R measured temperature < threshold
1 R measured temperature > threshold
i<address>.lux.limit 0 R measured daylight < threshold
1 R measured daylight > threshold
i<address>.wind.limit 0 R measured wind speed < threshold
1 R measured wind speed > threshold
i<address>.light.south 0 R light not from South
1 R light from South
i<address>.light.west 0 R light not from West
1 R light from West
i<address>.light.east 0 R light not from East
1 R light from East
i<address>.fault 0 R sensor works correctly
1 R lsensor failure
o<address>.temp <temp> RW temperature threshold (in C/10)
off RW temperature threshold off
o<address>.lux <lux*10> RW daylight threshold
off RW daylight threshold off
o<address>.wind 1 m/s / 10 RW wind speed threshold
off RW wind speed threshold off

MOD8R

8 power relay output module.

It uses one output address of the Contatto bus.

ID Value R/W Description
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on
o<address>.5 0 RW output pin 5 off
1 RW output pin 5 on
o<address>.6 0 RW output pin 6 off
1 RW output pin 6 on
o<address>.7 0 RW output pin 7 off
1 RW output pin 7 on
o<address>.8 0 RW output pin 8 off
1 RW output pin 8 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MODPNP

8 positive logic (PNP) “open collector” digital output module.

It uses one output address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on
o<address>.5 0 RW output pin 5 off
1 RW output pin 5 on
o<address>.6 0 RW output pin 6 off
1 RW output pin 6 on
o<address>.7 0 RW output pin 7 off
1 RW output pin 7 on
o<address>.8 0 RW output pin 8 off
1 RW output pin 8 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MODREL

8 relay output compact module in DIN 3M housing.

It uses one output address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on
o<address>.5 0 RW output pin 5 off
1 RW output pin 5 on
o<address>.6 0 RW output pin 6 off
1 RW output pin 6 on
o<address>.7 0 RW output pin 7 off
1 RW output pin 7 on
o<address>.8 0 RW output pin 8 off
1 RW output pin 8 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MOAN/U

0÷10V analog output module.

It uses one output address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
o<address> x/255 R value in fractional format, where 0 ≤ x ≤ 255
o<address> <x%> W the percentage of signal (0÷100%) applied to the output
0...255 W convert the 8 bits digital code received through the bus in the proper analog level.
x/y W fractional format, formatted as “x/y”, where 0 ≤ x ≤ y

MO420

4÷20mA analog output module.

It uses one output address in the range 1 to 127 of the Contatto bus.

ID Value R/W Description
o<address> <x%> RW the percentage of signal (0÷100%) applied to the output
0...255 RW convert the 8 bits digital code received through the bus in the proper analog level
x/y RW fractional format, formatted as “x/y”, where 0 ≤ x ≤ y

MODLC and MODLC-P

Ambient light regulator module with integrated sensor.

It uses one input address and, if enabled by the configuration panel of MCP IDE, one output address with the same value.

ID Value R/W Description
i<address>.lux value equivalent to three times the brightness in lux detected by the sensor R the brightness value in lux detected by the MODLC
i<address>.level calculated value for the automatic brightness regulation R the value to be sent to the dimmer in order to execute the automatic regulation
i<address>.mode auto R automatic regulation
man R manual regulation
i<address>.in 0 R digital input OFF
1 R digital input ON
o<address>.setpoint setpoint value RW set the setpoint for the automatic brightness regulation
o<address>.mode auto RW set automatic regulation
man RW set manual regulation
o<address>.in.reset 0 RW not active
1 R force the expiring of the deactivation delay time of the digital input
o<address>.mode.reset 0 RW not active
1 R disable the automatic regulation and it reset the input channel

MOD4-4S

4 digital input and 4 power relay output multifunction module.

HSYCO supports two configurations only: four independent outputs, or two shutters.

When set as four independent outputs, the module must be configured with the same base address for input and output.

For example:

(I20, O20)

The input address must be enabled. Configuration switches must be set as SW1=OFF, SW2=OFF and SW5=ON.

When set as two shutters, the module must be configured with the same base address for input and output.

For example:

(I20, O20, O21)

The input address must be enabled. Configuration switches must be set as SW1=ON, SW2=ON and SW5=ON.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
o<address>.1 up RW shutter up command
down RW shutter down command
stop RW shutter stop command
unknown R unknown state
offup R shutter off, up position
offdown R shutter off, down position
o<address+1>.1 up RW shutter up command
down RW shutter down command
stop RW shutter stop command
unknown R unknown state
offup R shutter off, up position
offdown R shutter off, down position
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MOD2-2R

2 digital input and 2 power relay output module.

It uses one input address and one output address in the range 1 to 127 of the Contatto bus.

The input and the output addresses may be the same or they can be different each one to the other.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MOD4-4R

4 digital input and 4 digital output module.

It uses one input address and one output address in the range 1 to 127 of the Contatto bus.

The input and the output addresses may be the same or they can be different each one to the other.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on

MOD2DM

2x300W dimmer module.

It uses 2 output addresses (one for each dimmer channel) and 2 input addresses.

HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON.

ID Value R/W Description
i<address> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+1> 0...100 R brightness level according to current ramp
off R dimmer off
o<address> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD2DM commands table)
o<address+1> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD2DM commands table)

The dimmer level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “n/m”, where 0 <= n <= m.

MOD2DV

Dual 1-10V output for electronic ballast driving.

It uses 2 output addresses (one for each dimmer channel) and 2 input addresses.

HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON.

ID Value R/W Description
i<address> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+1> 0...100 R brightness level according to current ramp
off R dimmer off
o<address> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD2DV commands table)
o<address+1> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD2DV commands table)

The dimmer level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “n/m”, where 0 <= n <= m.

MOD8IL

8 digital input – 8 LED output module for wall box.

It uses 1 input address and 1 output address.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.3 0 R input pin 3 off
1 R input pin 3 on
i<address>.4 0 R input pin 4 off
1 R input pin 4 on
i<address>.5 0 R input pin 5 off
1 R input pin 5 on
i<address>.6 0 R input pin 6 off
1 R input pin 6 on
i<address>.7 0 R input pin 7 off
1 R input pin 7 on
i<address>.8 0 R input pin 8 off
1 R input pin 8 on
o<address>.1 0 RW output pin 1 off
1 RW output pin 1 on
o<address>.2 0 RW output pin 2 off
1 RW output pin 2 on
o<address>.3 0 RW output pin 3 off
1 RW output pin 3 on
o<address>.4 0 RW output pin 4 off
1 RW output pin 4 on
o<address>.5 0 RW output pin 5 off
1 RW output pin 5 on
o<address>.6 0 RW output pin 6 off
1 RW output pin 6 on
o<address>.7 0 RW output pin 7 off
1 RW output pin 7 on
o<address>.8 0 RW output pin 8 off
1 RW output pin 8 on

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MOD4DV

Quad 0-10V output module for generic applications or for external dimmers control.

It uses 4 consecutive output addresses (one for each dimmer channel) and 4 input addresses.

HSYCO supports this module only when its dip-switches are set as SW1=ON, SW2=ON, SW3=ON, SW4=ON, SW5=OFF.

ID Value R/W Description
i<address> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+1> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+2> 0...100 R brightness level according to current ramp
off R dimmer off
i<address+3> 0...100 R brightness level according to current ramp
off R dimmer off
o<address> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD4DV commands table)
o<address+1> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD4DV commands table)
o<address+2> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD4DV commands table)
o<address+3> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...255 W command (see MOD4DV commands table)

The dimmer level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “x/y”, where 0 <= x <= y
  • values in the range 101÷255. Values and commands are described in the MOD4DV Programming Handbook (Operation from the bus, page 3).

MODDMX

ModDMX module allows to handle, through the Contatto bus, up to 32 DMX devices. ModDMX module makes possible the communication on the first 64 of 512 DMX channels allowed by this protocol.

It uses 1 output address, 1-channel 16-bit.

ID Value R/W Description
o<address>.<DMX address> 0...100 RW Values and commands are described in the MODDMX Programming Handbook

MODDALI

The ModDALI module allows the management of 4 DALI lines, with up to 32 devices for each line.

It uses 1 output address and, if enabled, 1 input address with the same value.

ID Value R/W Description
o<address>.<line> refresh RW update the state of the DALI devices
o<address>.<line>
o<address>.<line>.all
o<address>.<line>.0
off RW switch off all available DALI devices
<level> RW set a level for all available devices
o<address>.<line>.group.<DALI group> off RW switch off all DALI devices on that group
<level> RW set a level for all DALI devices in that group
o<address>.<line>.<DALI address> off RW switch off a single DALI device
<level> RW set a level for a single DALI device
fault R DALI device fault
>100 RW special functions: possible values are described in the MODDALI Programming Handbook
i<address>.<line>.polling off RW polling disabled
on RW polling enabled
i<address>.<line>.test 0 RW test button not pressed
1 RW test button pressed
i<address>.<line>.dali nopower RW lamp failure
open RW DALI line broken
short RW DALI line short circuit
on RW on DALI line
i<address>.<line>.1 fault RW ballast 1 lamp failure
unknown R ballast 1 lamp unknown state

The DALI device level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “x/y”, where 0 <= x <= y
  • values in the range 101÷255. Values and commands are described in the MODDALI Programming Handbook.

MODDALI8

The ModDALI8 module allows the management of 8 DALI lines, with up to 16 devices for each line (or channel).

It uses 2 consecutive input addresses and 1 input address with the same base value.

ID Value R/W Description
o<address>.<line> off RW off broadcast command
<level> RW level broadcast command
i<address>.<line>.polling off RW polling disabled
on RW polling enabled
i<address>.<line>.test 0 RW test button not pressed
1 RW test button pressed
i<address>.<line>.dali fault RW lamp failure
open RW no DALI device connected to this line
short RW DALI line short circuit
on RW DALI line working correctly

<line> can be set from 1 to 8 to address a single line, or 0 to send commands to all DALI lines.


The line level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “x/y”, where 0 <= x <= y
  • values in the range 101÷255. Values and commands are described in the MODDALI8 Programming Handbook.

CLIMA2

Module for the regulation of the ambient temperature.

It uses 1 input and 1 output address that are equal each one to the other, so only a base address is needed.

ID Value R/W Description
i<address> on R zone on
off R zone off
i<address>.mode summer R summer mode
winter R winter mode
i<address>.status off R off status
heating R heating request
cooling R cooling request
i<address>.fan off R fan off
min R min speed
med R med speed
max R max speed
i<address>.temp fault R NTC probe fault
<temp> R ambient temperature value, in C/10
i<address>.setpoint.temp <temp> R real setpoint value, in C/10
i<address>.knob 0 ... 1000 R position of rotary knob
o<address>.mode summer RW set summer
winter RW set winter
o<address> on RW zone on
off RW zone off
o<address>.setpoint.temp 0...400 RW set and read the value of central setpoint (temp in C/10)
o<address>.setpoint.delta.neg <temp> RW set and read the MAX negative delta
o<address>.setpoint.delta.pos <temp> RW set and read the MAX positive delta
o<address>.led.1 red
r
RW LED 1 red
green
g
RW LED 1 green
yellow
y
RW LED 1 yellow
off RW set off
o<address>.led.2 red
r
RW LED 2 red
green
g
RW LED 2 green
yellow
y
RW LED 2 yellow
off RW set off
o<address>.led.3 red
r
RW LED 3 red
green
g
RW LED 3 green
yellow
y
RW LED 3 yellow
off RW set off
o<address>.led.4 red
r
RW LED 4 red
green
g
RW LED 4 green
yellow
y
RW LED 4 yellow
off RW set off

You can also set the value to “on” or “off”, that is equivalent to 1 and 0.


MODANA

Network analyzer module for Contatto bus.

It uses, in dynamic mode, up to a maximum of 5 consecutive input addresses and, if enabled, 1 output address equal to the base address.

The module's firmware should be version 1.5 or later to support negative values for active power readings.


Note The module must be configured with the same base address for input and output.

For example:

(I7, O7)
ID Value R/W Description
i<address>.v12 [V] R chained voltage phase 1-2
i<address>.v23 [V] R chained voltage phase 2-3
i<address>.v31 [V] R chained voltage phase 3-1
i<address>.vtm [V] R average chained voltage
i<address>.i1 [A] R current phase 1
i<address>.i2 [A] R current phase 2
i<address>.i3 [A] R current phase 3
i<address>.itm [A] R average current
i<address>.ptot [W] R total active power
i<address>.ptotk [kW] R total active power
i<address>.qtot [W] R total reactive power
i<address>.qtotk [kW] R total reactive power
i<address>.pf [pf] R total power factor
i<address>.frequency [Hz] R frequency
i<address>.v1n [V] R voltage phase 1
i<address>.v2n [V] R voltage phase 2
i<address>.v3n [V] R voltage phase 3
i<address>.p1 [W] R active power phase 1
i<address>.p1k [kW] R active power phase 1
i<address>.p2 [W] R active power phase 2
i<address>.p2k [kW] R active power phase 2
i<address>.p3 [W] R active power phase 3
i<address>.p3k [kW] R active power phase 3
i<address>.q1 [W] R reactive power phase 1
i<address>.q1k [kW] R reactive power phase 1
i<address>.q2 [W] R reactive power phase 2
i<address>.q2k [kW] R reactive power phase 2
i<address>.q3 [W] R reactive power phase 3
i<address>.q3k [kW] R reactive power phase 3
i<address>.pf1 [pf] R power factor phase 1
i<address>.pf2 [pf] R power factor phase 2
i<address>.pf3 [pf] R power factor phase 3
i<address>.s1 [VA] R apparent power phase 1
i<address>.s1k [kVA] R apparent power phase 1
i<address>.s2 [VA] R apparent power phase 2
i<address>.s2k [kVA] R apparent power phase 2
i<address>.s3 [VA] R apparent power phase 3
i<address>.s3k [kVA] R apparent power phase 3
i<address>.stot [VA] R total apparent power
i<address>.hours [hours] R hour-meter
i<address>.temperature [°C] R cabinet temperature
i<address>.energy.active [KWh] R positive active energy
i<address>.energy.activeneg [KWh] R negative active energy
i<address>.energy.reactive [KVARh] R positive reactive energy
i<address>.energy.reactiveneg [KVARh] R negative reactive energy
i<address>.pm [W] R average positive active power
i<address>.qm [VAR] R average positive reactive power
o<address>.reset.energy 1 RW reset energies
0 RW ---
o<address>.reset.hours 1 RW reset hour-meter
0 RW ---

MODANAM

Network analyzer module for Contatto bus.

It uses, in dynamic mode, up to a maximum of 5 consecutive input addresses and, if enabled, 1 output address equal to the base address.

Note The module must be configured with the same base address for input and output.

For example:

(I7, O7)
ID Value R/W Description
i<address>.v12 [V] R chained voltage phase 1-2
i<address>.v23 [V] R chained voltage phase 2-3
i<address>.v31 [V] R chained voltage phase 3-1
i<address>.vtm [V] R average chained voltage
i<address>.i1 [A] R current phase 1
i<address>.i2 [A] R current phase 2
i<address>.i3 [A] R current phase 3
i<address>.itm [A] R average current
i<address>.ptot [W] R total active power
i<address>.ptotk [kW] R total active power
i<address>.qtot [W] R total reactive power
i<address>.qtotk [kW] R total reactive power
i<address>.pf [pf] R total power factor
i<address>.frequency [Hz] R frequency
i<address>.v1n [V] R voltage phase 1
i<address>.v2n [V] R voltage phase 2
i<address>.v3n [V] R voltage phase 3
i<address>.p1 [W] R active power phase 1
i<address>.p1k [kW] R active power phase 1
i<address>.p2 [W] R active power phase 2
i<address>.p2k [kW] R active power phase 2
i<address>.p3 [W] R active power phase 3
i<address>.p3k [kW] R active power phase 3
i<address>.q1 [W] R reactive power phase 1
i<address>.q1k [kW] R reactive power phase 1
i<address>.q2 [W] R reactive power phase 2
i<address>.q2k [kW] R reactive power phase 2
i<address>.q3 [W] R reactive power phase 3
i<address>.q3k [kW] R reactive power phase 3
i<address>.pf1 [pf] R power factor phase 1
i<address>.pf2 [pf] R power factor phase 2
i<address>.pf3 [pf] R power factor phase 3
i<address>.s1 [VA] R apparent power phase 1
i<address>.s1k [kVA] R apparent power phase 1
i<address>.s2 [VA] R apparent power phase 2
i<address>.s2k [kVA] R apparent power phase 2
i<address>.s3 [VA] R apparent power phase 3
i<address>.s3k [kVA] R apparent power phase 3
i<address>.stot [VA] R total apparent power
i<address>.hours [hours] R hour-meter
i<address>.temperature [°C] R cabinet temperature
i<address>.energy.active [KWh] R positive active energy
i<address>.energy.activeneg [KWh] R negative active energy
i<address>.energy.reactive [KVARh] R positive reactive energy
i<address>.energy.reactiveneg [KVARh] R negative reactive energy
o<address>.reset.energy 1 RW reset energies
0 RW ---
o<address>.reset.hours 1 RW reset hour-meter
0 RW ---

MODPQ5

Q5 tags proximity reader and programmer module.

Uses 1 input address on the Contatto bus. Write operations are performed through direct writes to the module’s RAM.

ID Value R/W Description
i<address>.data 0
<tag data>
R 30 characters hexadecimal representation of the 15 bytes of tag data; “0” if the module is not seeing any tag
i<address>.data.write 0 R the tag has been removed from the programmer after writing, or the module is not seeing any tag
1 R the tag write operation was successful
i<address>.reader.error 0 R reader/writer normal status
1 R reader/writer module error (normally occurs when the reader is not connected to the MODPQ5 module)
i<address>.tag.error 0 R the tag is valid
1 R the tag is not valid
i<address>.request.error 0 R no request or handshake errors detected
1 R handshake error
i<address>.data.error 0 R tag data ok
1 R tag data errors detected
i<address>.unknown.error 0 R no unknown errors
1 R unknown error detected
i<address>.write <tag data> R tag data write successful
error R tag data write error
o<address>.write <tag data> W 30 characters hexadecimal representation of the 15 bytes data to be written on the tag

MODHT

MODHT is the hotel room controller module.

It uses 1 input and 1 output address.

Tags configuration data are written to the module’s EEPROM (persistent internal memory).

ID Value R/W Description
i<address>.door 0 R door closed
1 R door open
i<address>.window 0 R window closed
1 R window open
i<address>.panic 0 R panic request not active
1 R panic request
i<address>.busy 0 R room is free
1 R room is occupied
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.ev 0 R EV output off
1 R EV output on
i<address>.aux 0 R AUX output off
1 R AUX output on
i<address>.dnd 0 R do not disturb not active
1 R do not disturb
i<address>.service 0 R room service request not active
1 R room service request
i<address>.booked 0 R room is not booked
1 R room is booked
i<address>.mode summer R summer mode
winter R winter mode
i<address>.fan off R fan set to off
auto R fan speed set to auto
min R fan speed set to minimum
med R fan speed set to medium
max R fan speed set to max
i<address>.fan.status 0 R fan is off
1 R fan is on (cooling or heating)
i<address>.temp <temp> R ambient temperature value (in C/10)
i<address>.setpoint.temp <temp> R setpoint value (in C/10)
i<address>.tag.door 1...5 R type of tag that is opening the door (1 to 4 are service tags; 5 is a customer tag). After 5 seconds the value is reset to 0
i<address>.tag.room 0 R no tag present in room’s reader
1...5 R type of tag inserted in the room’s reader (1 to 4 are service tags; 5 is a customer tag)
i<address>.tag.<n> <tag data> R 24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5) stored in module’s EEPROM
i<address>.pcam.error 0 R PCAM module ok
1 R PCAM module error
i<address>.tpr.error 0 R TPR/H module ok
1 R TPR/H module error
i<address>.mask <mask data> R 24 characters hexadecimal representation of the 12 bytes tag mask stored in module’s EEPROM
i<address>.data.door 0
<tag data>
R 30 characters hexadecimal representation of the 15 bytes of tag data being read from the door reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
i<address>.data.room 0
<tag data>
R 30 characters hexadecimal representation of the 15 bytes of tag data being read from the room reader; “0” if the module is not seeing any tag (this data point is available with MODHT firmware 5.3 or newer)
i<address>.setpoint.summer.<n>
i<address>.setpoint.winter.<n>
<temp> R winter/summer setpoint <n> (1...3) current value (in C/10)
i<address>.setpoint.delta.summer.low
i<address>.setpoint.delta.summer.high
i<address>.setpoint.delta.winter.low
i<address>.setpoint.delta.winter.high
<temp delta limit>
1...9
R the current temperature setpoint low/high limits for winter and summer modes (in C)
o<address>.tag.<n> <tag data> R tag data write successful
error R tag data write error
o<address>.mask <mask data> R mask data write successful
error R mask data write error
o<address>.setpoint.summer.<n>
o<address>.setpoint.winter.<n>
<temp> R winter/summer setpoint N (1-3) write successful (in C/10)
error R setpoint write error
o<address>.setpoint.delta.summer.low
o<address>.setpoint.delta.summer.high
o<address>.setpoint.delta.winter.low
o<address>.setpoint.delta.winter.high
<temp delta limit>
1...9
R setpoint min/max limit for winter/summer write successful (in C)
error R setpoint limit write error
o<address>.ev.enable 0 W EV output disabled
1 W EV output enabled
o<address>.aux.enable 0 W AUX output disabled
1 W AUX output enabled
o<address>.panic.reset 1 W panic request reset
o<address>.busy 0 W set room status to free
1 W set room status to occupied
o<address>.ev 0 W EV output off
1 W EV output on
o<address>.aux 0 W AUX output off
1 W AUX output on
o<address>.dnd.reset 1 W do not disturb reset
o<address>.service.reset 1 W do not disturb reset
o<address>.booked 0 W set room as not booked
1 W set room as booked
o<address>.mode summer W set room to summer mode
winter W set room to winter mode
o<address>.fan off W set fan off
auto W set fan to auto mode
o<address>.comfort 0 W force comfort set-point off
1 W force comfort set-point on
o<address>.3 0 W output pin 3 off
1 W output pin 3 on
o<address>.fan.heating.min 0 W reset heating speed limit
1 W limit heating speed to min
o<address>.fan.cooling.min 0 W reset cooling speed limit
1 W limit cooling speed to min
o<address>.tag.<n> read W read the 12 bytes stored in module’s EEPROM for service N tags (<n> from 1 to 5)
<tag data> W 24 characters hexadecimal representation of the 12 bytes data matching service N tags (N from 1 to 5), to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
o<address>.mask read W read the 12 bytes mask stored in module’s EEPROM
<mask data> W 24 characters hexadecimal representation of the 12 bytes tag mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 150ms before sending a read command
o<address>.setpoint.summer.<n>
o<address>.setpoint.winter.<n>
read W read winter/summer setpoint <n> (1-3)
<temp> W set winter/summer setpoint <n> (1-3)
o<address>.setpoint.delta read W read winter and summer, low and high setpoint limits
o<address>.setpoint.delta.summer.low
o<address>.setpoint.delta.summer.high
o<address>.setpoint.delta.winter.low
o<address>.setpoint.delta.winter.high
<temp delta limit> W set winter/summer, low/high setpoint limit (in C)

MODCA

MODCA is the access control module.

It uses 1 input and 1 output address.

Tags configuration data are written to the module’s EEPROM (persistent external memory).

Site codes and the tags mask are written to the internal EEPROM.

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.blocked 0 R access control enabled
1 R access blocked
i<address>.tpr.error 0 R TPR module ok
1 R TPR module error
i<address>.access.granted.1 0 R no tag present at antenna 1
1 R access granted to tag at antenna 1
i<address>.access.granted.2 0 R no tag present at antenna 2
1 R access granted to tag at antenna 2
i<address>.access.denied 0 R access denied flags reset
site R access denied due to site code error
code R access denied due to user code error
total.limit R access denied due to exceeded total number of access grants
daily.limit R access denied due to exceeded daily number of access grants
time R access denied due to time range violation
day R access denied due to weekday violation
expired R access denied due expired tag
i<address>.denied.code <tag code> R the tag code (decimal value of selected two bytes of the tag data) that was denied access
i<address>.granted.1.code <tag code> R the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 1
i<address>.granted.2.code <tag code> R the tag code (decimal value of selected two bytes of the tag data) that was granted access at antenna 2
i<address>.site.<n> <site data> R 16 characters hexadecimal representation of the 8 bytes data representing the Nth site code (N from 1 to 4) stored in module’s EEPROM
i<address>.mask <mask data> R 16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
i<address>.mask <mask data> R 16 characters hexadecimal representation of the 8 bytes site code mask stored in module’s EEPROM
i<address>.user.<n> <user data> R 32 characters hexadecimal representation of the 16 bytes data for user <n> (N from 1 to 2000) stored in module’s EEPROM
o<address>.site.<n> <site data> R site data write successful
error R site data write error
o<address>.mask <mask data> R mask data write successful
error R mask data write error
o<address>.user.<n> <user data> R user data write successful
error R user data write error
o<address>.relay 0 W relay output off
1 W relay output pulse on, with pulse length according to the MODCA configuration (with firmware versions before 1.3 this data point remains at 1 and should be reset to 0 with an explicit command; with firmware 1.3 the data point value follows the relay state, and is automatically reset to 0 at the end of the pulse period)
o<address>.relay.forced 0 W forced relay mode not set (default behaviour)
1 W forced relay mode set: the relay remains closed until the relay.forced command is reset (available with MODCA firmware version 2.0 or later)
o<address>.block 0 W enable access control
1 W block access control
o<address>.access.granted.code 0 W reset
1 W allow access even when site code is not valid
o<address>.access.granted.total.limit 0 W reset
1 W allow access even when the total limit of access grants has been exceeded
o<address>.access.granted.daily.limit 0 W reset
1 W allow access even when the daily limit of access grants has been exceeded
o<address>.access.granted.time 0 W reset
1 W allow access even outside of the allowed timeframe
o<address>.access.granted.day 0 W reset
1 W allow access even outside of the allowed weekdays
o<address>.access.granted.expired 0 W reset
1 W allow access even when the tag is expired
o<address>.site.<n> read W read the 8 bytes stored in module’s EEPROM for site N code (<n> from 1 to 4)
<site data> W 16 characters hexadecimal representation of the 8 bytes data of site N code (N from 1 to 4), to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
o<address>.mask read W read the 8 bytes mask stored in module’s EEPROM
<mask data> W 16 characters hexadecimal representation of the 8 bytes site code mask, to be stored in module’s EEPROM. After writing data, you should wait approximately 100ms before sending a read command
o<address>.user.<n> read W read the 16 bytes stored in module’s EEPROM for user N (<n> from 1 to 2000)
<user data> W 16 characters hexadecimal representation of the first 8 bytes of access control data for user N (N from 1 to 2000) , to be stored in module’s EEPROM
<reset> W reset to 0 the total and daily counters for user <n>
o<address>.users erase W deletes all users data. This action requires up to about 27 seconds to be completed. It also deletes all i<address>.user.<n> and o<address>.user.<n> data points

MODKB

MODKB is the keypad access control module.

It uses 1 input and 1 output address.

PIN configuration data are written to the module’s EEPROM (persistent memory).

ID Value R/W Description
i<address>.1 0 R input pin 1 off
1 R input pin 1 on
i<address>.2 0 R input pin 2 off
1 R input pin 2 on
i<address>.access.granted.<n> 0 R reset
1 R access granted to PIN <n> (<n> from 1 to 30)
i<address>.pin <pin code> R the last pin code entered on the keypad (from 1 to 65535). Reset to 0 after programmed code persistence time
i<address>.access.granted.<n> 0 R access denied flags reset
site R access denied due to site code error
code R access denied due to user code error
time R access denied due to time range violation
day R access denied due to weekday violation
i<address>.pin.<n> <pin data> R 16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30) stored in module’s EEPROM
o<address>.pin.<n> <pin data> R pin data write successful
error R pin data write error
o<address>.relay 0 W relay output off
1 W relay output on (pulse output, resets to 0 immediately after the relay is closed, usually before the relay closure time)
o<address>.lock.all 0 W reset
1 W disables access to all PINs
o<address>.lock.<n> 0 W reset
1 W disables access to PIN <n> (<n> from 1 to 30)
o<address>.pin.<n> read W read the 8 bytes stored in module’s EEPROM for PIN <n> (<n> from 1 to 30)
<pin data> W 16 characters hexadecimal representation of the 8 bytes data for PIN <n> (<n> from 1 to 30), to be stored in module’s EEPROM

MODDI

500W IGBT dimmer module.

It uses 1 output address.

ID Value R/W Description
o<address> 0...100 RW brightness level according to current ramp
off RW dimmer off
101...173 W command (see MODDI commands table)
o<address>.noline 0 R AC line detected
1 R AC line fault
o<address>.overcurrent 0 R normal
1 R overcurrent protection
o<address>.overvoltage 0 R normal
1 R overvoltage protection
o<address>.overtemperature 0 R normal
1 R overtemperature protection

The dimmer level can be set using additional formats besides the standard percent values:

  • absolute positive integer number between 0 and 100
  • percent number, formatted as x%
  • fractional format, formatted as “n/m”, where 0 <= n <= m.

MODCL

Temperature control module.

It uses 1 input and one output address.

ID Value R/W Description
i<address> on R zone on
off R zone off
i<address>.mode winter R winter mode
summer R summer mode
i<address>.fan min R min fan speed
med R medium fan speed
max R max fan speed
off R fan off
i<address>.fan.mode man R manual fan mode
auto R auto fan mode
i<address>.setpoint 1 R setpoint 1
2 R setpoint 2
3 R setpoint 3
off R off
man R manual setpoint
i<address>.setpoint.mode man R manual setpoint mode
auto R auto setpoint mode
i<address>.temp <temp> R temperature value (in C/10)
fault R temperature sensor fault
i<address>.status off R off
cooling R cooling status mode
heating R heating status mode
o<address> on RW zone on (writing on to this datapoint doesn't turn the zone on, it simply resets the off command)
off RW zone off
o<address>.mode winter RW winter mode
summer RW summer mode
o<address>.setpoint.mode man RW manual mode
auto RW auto mode
off RW zone off
o<address>.setpoint 1 RW setpoint 1
2 RW setpoint 2
3 RW setpoint 3
0 RW setpoint off
man RW manual setpoint
o<address>.setpoint.temp.1 <temp> RW temperature setpoint 1 value (in C/10)
o<address>.setpoint.temp.2 <temp> RW temperature setpoint 2 value (in C/10)
o<address>.setpoint.temp.3 <temp> RW temperature setpoint 3 value (in C/10)
o<address>.setpoint.temp.man <temp> RW temperature manual setpoint value (in C/10)

MOD4TP/I

8 digital input and 4 roller shutters or blinds with detection of travel time.


ID Value R/W Description
i<address>.<N> 0 R input pin N off
1 R input pin N on
o<address>.<N> up RW shutter N up command
down RW shutter N down command
stop W shutter N stop command
off
up1 W shutter N up one step command
down1 W shutter N down one step command
unknown R shutter N unknown state
offup R shutter N off, up position
offdown R shutter N off, down position
0-100 R shutter N current position
o<address>.calibration.<N> 0 R shutter N normal operations
1 RW shutter N calibration command
o<address>.position.<N> 0-100 RW shutter N position command
o<address>.slats.<N> 0-100 W shutter N slats position command (no feedback available)

User Interface

All CONTATTO devices data points that have been defined in the systemtopo.txt database are automatically listed in the Project Editor. Adding a button to control a device output point requires just a few clicks and no additional EVENTS logic.


IO Servers Contatto Project Editor.png


Besides the direct association of control buttons and data points, the CONTATTO driver also automatically updates graphical objects that represent values or states of complex devices, like the CLIMA2 temperature control unit. It will also automatically intercept buttons to manually set operation modes and temperature set-points.


CLIMA2

You can use the temp and tempmini objects to control CLIMA2 devices.


UI Object clima2.png


The fan button, in the bottom right-hand corner, is not enabled because the manual control of the fan speed is not available. The M button, in the top right-hand corner, allows to switch the module on or off.

You can also easily create customized controls for the CLIMA2, using standard graphic objects that are automatically set to show the device’s status and intercepted to send user commands.

UISET Actions

ID Attribute Set to Description
<address>.mode value SUMMER summer mode (cooling)
value WINTER winter mode (heating)
<address>.mode.label.summer visible true if CLIMA2 is in summer mode
<address>.mode.label.winter visible true if CLIMA2 is in winter mode
<address>.status value OFF zone off
value ON zone on
<address>.status.label.off visible true if the zone is not cooling or heating
<address>.status.label.cooling visible true if the zone is cooling
<address>.status.label.heating visible true if the zone is heating
<address>.fan value OFF fan off
value MIN minimum fan speed
value MED medium fan speed
value MAX maximum fan speed
<address>.fan.label.min visible true minimum fan speed
<address>.fan.label.med visible true medium fan speed
<address>.fan.label.max visible true maximum fan speed
<address>.setpoint.label.on visible true zone is on
<address>.setpoint.label.off visible true zone is off
<address>.setpoint.mode value ON zone is on
value OFF zone is off
<address>.setpoint.temp value <value> the active setpoint temperature, in Celsius degrees with one decimal digit, followed by " °C"
<address>.temp value <temp> the measured temperature, in Celsius degrees with one decimal digit, followed by " °C"
FAULT fault/error condition

USER Commands

Name Param Action
<address> on module on
off module off
mode.summer set summer mode (cooling)
mode.winter set winter mode (heating)
<address>.setpoint temp.up increase setpoint temperature in 0.5C steps
temp.down decrease setpoint temperature in 0.5C steps
0...400 set the setpoint to the defined value (in C/10)
mode cycle through on and off modes
mode.on module on
mode.off module off



MODCL

You can use the temp and tempmini objects to control MODCL devices.


The fan button, in the bottom right-hand corner, is not enabled because the manual control of the fan speed is not available. The M button, in the top right-hand corner, allows to switch the module to auto or manual mode, or off.

You can also easily create customized controls for the MODCL, using standard graphic objects that are automatically set to show the device’s status and intercepted to send user commands.

UISET Actions

ID Attribute Set to Description
<address>.mode value SUMMER summer mode (cooling)
WINTER winter mode (heating)
<address>.mode.label.summer visible true if MODCL is in summer mode
<address>.mode.label.winter visible true if MODCL is in winter mode
<address>.status value OFF zone off
ON zone on
<address>.status.label.off visible true if the zone is not cooling or heating
<address>.status.label.cooling visible true if the zone is cooling
<address>.status.label.heating visible true if the zone is heating
<address>.fan value OFF fan off
MIN minimum fan speed
MED medium fan speed
MAX maximum fan speed
<address>.fan.label.min visible true minimum fan speed
<address>.fan.label.med visible true medium fan speed
<address>.fan.label.max visible true maximum fan speed
<address>.setpoint value 1, 2, 3 setpoint N is active
MAN manual setpoint is active
OFF zone is off
<address>.setpoint.label.1 visible true setpoint 1 is active
<address>.setpoint.label.2 visible true setpoint 3 is active
<address>.setpoint.label.3 visible true setpoint 3 is active
<address>.setpoint.label.man visible true manual setpoint is active
<address>.setpoint.label.off visible true zone is off
<address>.setpoint.mode value AUTO automatic mode
MAN manual mode
OFF zone is off
<address>.setpoint.temp value <value> the active setpoint temperature, in Celsius degrees with one decimal digit, followed by " °C"
<address>.temp value <temp> the measured temperature, in Celsius degrees with one decimal digit, followed by " °C"
FAULT fault/error condition

USER Commands

Name Param Action
<address> mode cycle summer/winter modes
<address>.mode mode.summer set summer mode (cooling)
mode.winter set winter mode (heating)
<address>.setpoint.temp up increase current setpoint temperature in 0.5C steps
down decrease current setpoint temperature in 0.5C steps
<address>.setpoint.temp.N up increase setpoint N temperature in 0.5C steps
down decrease setpoint N temperature in 0.5C steps
0...400 set setpoint N to the given value (in C/10)
<address>.setpoint.temp.man up increase manual setpoint temperature in 0.5C steps
down decrease manual setpoint temperature in 0.5C steps
0...400 set manual setpoint to the given value (in C/10)
<address>.setpoint mode cycle through auto, manual and off modes
<address>.setpoint.mode auto set auto mode
man set manual mode
off zone off

MOD4TP/I

Using slider objects for MOD4TP/I shutter's position

You can use the slider objects, sliderv and sliderh, to display and control the position. Set both the slider's ID and address to <server_name>.<address>.<N>, with N from 1 to 4.

Note Note that you can set the inverse attribute of the sliderv object to true, in order to have the cursor at the top instead of bottom of the slider when the position is 0.

Release Notes

3.6.0

  • added support for MOD32IL
  • added support for MOD4TP/I
  • added support for MODDALI8
  • added support for MODANAM
  • fixed a bug that could cause erroneous readings of MODANA's ptotk datapoint when total active power is negative

3.5.1

  • MODANA updated to support negative active energy values (fw. 1.5 or later)

3.5.0

  • added support for MCP4
  • added support for MODCA firmware version 2.0, with new "relay.forced" datapoint
  • added support for MOD32IN
  • MODPQ5 is now identified with its unique ID. Use MCPIDE 3.2.3 or later to program the MCPXT/MCP4 to allow HSYCO to correctly identify this module

3.4.0

  • improved communication error logging
  • improved support of tools remote access
  • events generated during startup if startupevents=true are now executed sequentially
  • support for MODDI
  • support for MODCL

3.2.2

bug fixes:

  • the toolspassword optional parameter was incorrectly converted to lower case
  • fixed a bug that prevented reading the last 3 addresses of MOAN/I4 and MI420-X4 modules

3.2.1

  • added support for MODHT set-point delta limits read and write
  • the lux datapoint name was incorrectly set to ID.i<addr>.1 instead of ID.i<addr>.lux

3.2.0

  • support for MODCA, MODHT, MODKB, MODPQ5
  • new "detectevents" option, generates forced events when a device is detected at start-up
  • support for the toolspassword option, to allow MCP-IDE and other tools secure remote access to the MCP via HSYCO
  • new clock datapoint to read the MXP-XT internal clock and set it to HSYCO's time

3.0.3

  • optimized performance of MCP’s registers status polling
  • the server failed to initialized when an unsupported device was configured in the MCP

3.0.1

  • you can now limit the number of virtual points and registers read and written by HSYCO, and have access to all of the 1024 registers; defaults are unchanged

3.0.0

  • initial release


HSYCO and Home Systems Consulting are registered trademarks of Home Systems Consulting SpA. Java and JavaScript are registered trademarks of Oracle and/or its affiliates. CONTATTO and DUEMMEGI are registered trademarks of DUEMMEGI SRL. Other products or company names can be trademarks or registered trademarks of other companies and are used for demonstrative purposes only, with no violation intent.