Tridonic

From HSYCO
Jump to navigation Jump to search

Tridonic is a lighting system based on the DALI bus technology. HSYCO integrates this system and communicates with it through the DALI SCI2 interface module or DALI interface RS232 PS/S interface module and its communication protocol. The integration relies on a direct connection between the DALI SCI2 or DALI RS232 PS/S interface and HSYCO server’s RS-232 serial port, or through a TCP/IP to serial port gateway.

Communication

The DALI SCI2 interface module communicates with HSYCO through a RS-232 interface.

RS-232 parameters:

Baud rate 38400 bps
Data bits 8
Stop bit 1
Parity none
Flow Control none

Further, the RS-232 signals RTS and DTR must be set to the following levels:

  • RTS = +6 ... +12 V
  • DTR = -6 ... -12 V.

Refer to the SCI2 manual for installation, wiring and power supply requirements.


The DALI RS232 PS/S interface module communicates with HSYCO through a RS-232 interface.

The interface must be switched to data transfer mode 2 (DALI SCI2)

• Press test key

• Release test key during the 5th orange phase

DALI Interface RS232 PS/S switches to data transfer mode 2


Please refer to this table for the wiring:

IO Servers Tridonic DALI PSS.png

Tridonic Configuration

An illustrative scenario for a DALI architecture looks as follows:

IO Servers Tridonic DALI Architecture.png

On one BUS, there can be up to 64 dimmers, addressed from 0 to 63, organized in up to 16 groups (0 - 15) or individually addressable. The driver also includes the support for the MSensor 2.0 motion detector and photometer functionalities. The MSensor 2.0 can be configured to work in two different modes:

  • Direct-master mode (default mode): The MSensor has a DALI address and sends motion detection and light regulation commands to the group specified by its rotary switch (if the switch is set on the value X the controlled group will be X - 1, if the switch is set on “0” the commands are broadcasted). The light intensity value measured by the light sensor is only read upon request (see the datapoints table)
  • Indirect-master mode: The MSensor doesn’t have a DALI address and does not control any dimmer directly. The motion detector and the light sensor have two different eDALI (extended DALI) addresses from which they send motion and light intensity asynchronous events.

HSYCO Configuration

Add a TRIDONIC I/O Server in the I/O Servers section of the Settings and set its parameters:

Communication

  • Comm ID: the comm port the device is connected to.

High Availability

  • Shutdown when inactive: defaults to true.

Options

ID Default Values Description
discovery true true auto-detects all DALI devices and groups, and automatically lists them in the systemtopo.txt file
false auto-detect for devices is disabled
startupevents false true generate IO events also during the driver’s start-up phase
false start generating events only after HSYCO is aligned with the current status of the system
broadcastrange 1-254 <min>-<max> specifies the minimum <min> and maximum<max> allowed light levels for the broadcast command
groupsrange g<n>:1-254 g<n>:<min>-<max> specifies the minimum <min> and maximum<max> allowed light levels for the group <n>. If more than one group range is to be specified, then list the ranges separated by “;”, e.g. groupsrange=g0:20-254;g1:40-250
luxdelta 0 ≥ 0 option for MSensors. Specifies the minimum difference between light intensity readings required to generate a new event. I.e. when a “xxx.lux” event is generated, a new event (from the same sensor) will be generated only if the new value is greater than the old value plus the luxdelta value or smaller than the old value minus the luxdelta value

The Device Configuration Database

The systemtopo.txt file contains the list of all dimmers, groups and the broadcast address that could be directly associated to graphic objects in the Web-based user interface. This file can be filled manually or automatically by HSYCO at start-up. To enable automatic discovery and automatic generation of devices’ information in the systemtopo.txt file, set the 'discovery' option to true.

This is an example of an automatically generated systemtopo.txt file:

(devices)
tr.0 : LIGHT ; DIMMER ;
tr.1 : LIGHT ; DIMMER ;
tr.2 : LIGHT ; DIMMER ;
tr.g1 : LIGHT ; DIMMER ; DALI group [1,2]
tr.g4 : LIGHT ; DIMMER ; DALI group [0,1]
tr.broadcast : LIGHT ; DIMMER ; DALI broadcast

You should then manually add comments and other optional parameters:

(devices)
tr.0 : LIGHT ; DIMMER ; door
tr.1 : LIGHT ; DIMMER ; corridor 1
tr.2 : LIGHT ; DIMMER ; corridor 2
tr.g1 : LIGHT ; DIMMER ; corridor group
tr.g4 : LIGHT ; DIMMER ; entrance group
tr.broadcast : LIGHT ; DIMMER ; DALI broadcast

Datapoints

ID Value R/W Description
connection online R connection established
offline R not connected
<n>

g<m>
broadcast

on W set the light level of the target to the last level set before the off command
off R the target is off
W switch the target off
1...100% R the light level of the target corresponds to the reported value
W set the light level of the target to the specified value
X/Y W set the light level of the target to the specified fraction (e.g. a value of 1/5 corresponds to 20%)
min W set the light level of the target to the minimum level (1%) without fading
max W set the light level of the target to the maximum level (100%) without fading
up W set the light level of the target one step higher
down W set the light level of the target one step lower
<n>.lux[Note 1] read W request the reading of the light intensity measured by the targeted MSensor
<lux> R the light intensity measured by the targeted MSensor corresponds to the reported value (in lux). The reading must be requested via the “read” function
broadcast.lux[Note 1] read W request the reading of the light intensity on all the MSensors
e<x>.lux[Note 2]

where <x> is the eDALI address of the light sensor of the MSensor

<lux> R the light intensity measured by the targeted MSensor corresponds to the reported value (in lux)
motion g<m>[Note 1] R a motion event has been reported to group <m>
broadcast[Note 1] R a motion event has been broadcasted
e<x>[Note 2] R a motion event has been generated by the MSensor’s light sensor with eDALI address <x>
<n>.scene

g<m>.scene
broadcast.scene

0...15 W set the light level of the target to the value stored for the specified scene number (from 0 to 15)
command <xxyy> R the 2-byte hexadecimal DALI frame[Note 3] has been sent to the system
W sends the 2-byte hexadecimal DALI frame[Note 3] to the system
monitor none W none of the DALI frames detected on the bus will be reported
ignored W only the DALI frames detected on the bus not processed by the driver will be reported
all W all the DALI frames detected on the bus will be reported
<xxyy> R the reported 2-byte hexadecimal DALI frame[Note 3] has been detected on the bus
refresh 0 W the secondary properties of the devices (minimum and maximum levels, fade time and fade rate) won’t be rechecked on every monitor loop iteration
1 W the secondary properties of the devices (minimum and maximum levels, fade time and fade rate) will be rechecked on every monitor loop iteration
<n>.error

g<m>.error
broadcast.error

0 R the target works properly
1 R the target is in an error state

Note 1 
Only available if the MSensor is configured to work in Direct-master mode (default mode).

Note 2 
Only available if the MSensor is configured to work in Indirect-master mode.

Note 3 
The 2-byte DALI frames consist of an 8-bit address part and an 8-bit command part.

The address byte is formatted as follows:

Type of Address Byte Description
Individual address 0AAAAAAS (AAAAAA = 0 .. 63, S = 0/1)
Group Address 100AAAAS (AAAA = 0 .. 15, S = 0/1)
Broadcast Address 1111111S (S = 0/1)

The command byte is to be interpreted as an arc power level (light intensity) if bit S is 0. The arc power can range between 00 (off) and and FE (maximum level) expressed in hexadecimal. A 1 in the position S means that the command byte is to be interpreted as a DALI command. Refer to the following table for a list of all available commands:

Command Description
00 Extinguish the lamp without fading
01 Dim up 200 ms using the selected fade rate
02 Dim down 200 ms using the selected fade rate
03 Set the actual arc power level one step higher without fading
04 Set the actual arc power level one step lower without fading
05 Set the actual arc power level to the maximum value
06 Set the actual arc power level to the minimum value
07 Set the actual arc power level one step lower without fading
08 Set the actual arc power level one step higher without fading
10 + scene Set the light level to the value stored for the selected scene
20 Reset the parameters to default settings
21 Store the current light level in the DTR
2A Store the value in the DTR as the maximum level
2B Store the value in the DTR as the minimum level
2C Store the value in the DTR as the system failure level
2D Store the value in the DTR as the power on level
2E Store the value in the DTR as the fade time
2F Store the value in the DTR as the fade rate
40 + scene Store the value in the DTR as the selected scene
50 + scene Remove the selected scene from the slave unit
60 + group Add the slave unit to the selected group
70 + group Remove the slave unit from the selected group
80 Store the value in the DTR as a short address
90 Returns the status of the slave as XX
91 Check if the slave is working
92 Check if there is a lamp failure
93 Check if the lamp is operating
94 Check if the slave has received a level out of limit
95 Check if the slave is in reset state
96 Check if the slave is missing a short address
97 Returns the version number as XX
98 Returns the content of the DTR as XX
99 Returns the device type as XX
9A Returns the physical minimum level as XX
9B Check if the slave is in power failure mode
A0 Returns the current light level as XX
A1 Returns the maximum allowed light level as XX
A2 Returns the minimum allowed light level as XX
A3 Return the power up level as XX
A4 Returns the system failure level as XX
A5 Returns the fade time as X and the fade rate as Y
B0 + scene Returns the light level XX for the selected scene
C0 Returns a bit pattern XX indicating which group (0-7) the slave belongs to
C1 Returns a bit pattern XX indicating which group (8-15) the slave belongs to
C2 Returns the high bits of the random address as HH
C3 Return the middle bit of the random address as MM
C4 Returns the lower bits of the random address as LL

Other than the above described commands, it is possible to send the following 2-byte DALI frames:

Frame Description
A100 All special mode processes shall be terminated
A3XX Store value XX in the DTR
A5XX Initialize addressing commands for slaves with address XX
A700 Generate a new random address
A900 Compare the random address with the search address
AB00 Withdraw from the compare process
B1HH Store value HH as the high bits of the search address
B3MM Store value MM as the middle bits of the search address
B5LL Store value LL as the lower bits of the search address
B7XX Program the selected slave with short address XX
B9XX Check if the selected slave has short address XX
BB00 The selected slave returns its short address XX
BD00 Go into physical selection mode

The value of the events ID.command and ID.monitor is expressed as a 4-digits string “XXYY” representing the hexadecimal value (upper case letters) of the two bytes. For instance, to send the command 00 to the group 1 of our system “tr”, the following syntax will apply: tr.command = 8300

User Interface

All the devices that have been defined in the systemtopo.txt database are automatically listed in the Web Editor. Adding a slider to control a dimmer requires just a few clicks and no additional EVENTS logic.


IO Servers Tridonic Project Editor.png

Release Notes

3.3.0

  • added support for Tridonic MSensor 2.0 devices

3.0.0

  • initial release


Tridonic is a registered trademark of Tridonic.